These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 32236785)

  • 1. Pinpoint analysis of a protein in slow exchange using F
    Nishizawa M; Walinda E; Morimoto D; Sugase K
    J Biomol NMR; 2020 May; 74(4-5):205-211. PubMed ID: 32236785
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative analysis of protein-ligand interactions by NMR.
    Furukawa A; Konuma T; Yanaka S; Sugase K
    Prog Nucl Magn Reson Spectrosc; 2016 Aug; 96():47-57. PubMed ID: 27573180
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High Pressure ZZ-Exchange NMR Reveals Key Features of Protein Folding Transition States.
    Zhang Y; Kitazawa S; Peran I; Stenzoski N; McCallum SA; Raleigh DP; Royer CA
    J Am Chem Soc; 2016 Nov; 138(46):15260-15266. PubMed ID: 27781428
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protocol to identify drug-binding sites in proteins using solution NMR spectroscopy.
    Penumutchu S; Liu J; Singh UK; Kutateladze TG; Zhang Y
    STAR Protoc; 2022 Dec; 3(4):101842. PubMed ID: 36595882
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Longitudinal exchange: an alternative strategy towards quantification of dynamics parameters in ZZ exchange spectroscopy.
    Kloiber K; Spitzer R; Grutsch S; Kreutz C; Tollinger M
    J Biomol NMR; 2011 Sep; 51(1-2):123-9. PubMed ID: 21947921
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NMR chemical exchange as a probe for ligand-binding kinetics in a theophylline-binding RNA aptamer.
    Latham MP; Zimmermann GR; Pardi A
    J Am Chem Soc; 2009 Apr; 131(14):5052-3. PubMed ID: 19317486
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Studying "invisible" excited protein states in slow exchange with a major state conformation.
    Vallurupalli P; Bouvignies G; Kay LE
    J Am Chem Soc; 2012 May; 134(19):8148-61. PubMed ID: 22554188
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NMR-based approach to measure the free energy of transmembrane helix-helix interactions.
    Mineev KS; Lesovoy DM; Usmanova DR; Goncharuk SA; Shulepko MA; Lyukmanova EN; Kirpichnikov MP; Bocharov EV; Arseniev AS
    Biochim Biophys Acta; 2014 Jan; 1838(1 Pt B):164-72. PubMed ID: 24036227
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of SQSTM1/p62 via UBA domain ubiquitination and its role in disease.
    Lee Y; Weihl CC
    Autophagy; 2017 Sep; 13(9):1615-1616. PubMed ID: 28812433
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automated assignment of NMR spectra of macroscopically oriented proteins using simulated annealing.
    Lapin J; Nevzorov AA
    J Magn Reson; 2018 Aug; 293():104-114. PubMed ID: 29920407
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accessing the global minimum conformation of stefin A dimer by annealing under partially denaturing conditions.
    Jerala R; Zerovnik E
    J Mol Biol; 1999 Sep; 291(5):1079-89. PubMed ID: 10518944
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NMR investigation of main-chain dynamics of the H80E mutant of bovine neurophysin-I: demonstration of dimerization-induced changes at the hormone-binding site.
    Naik MT; Lee H; Bracken C; Breslow E
    Biochemistry; 2005 Sep; 44(35):11766-76. PubMed ID: 16128578
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Backbone dynamics of SDF-1alpha determined by NMR: interpretation in the presence of monomer-dimer equilibrium.
    Baryshnikova OK; Sykes BD
    Protein Sci; 2006 Nov; 15(11):2568-78. PubMed ID: 17075134
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combined frequency- and time-domain NMR spectroscopy. Application to fast protein resonance assignment.
    Brutscher B
    J Biomol NMR; 2004 May; 29(1):57-64. PubMed ID: 15017139
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein NMR structure determination with automated NOE assignment using the new software CANDID and the torsion angle dynamics algorithm DYANA.
    Herrmann T; Güntert P; Wüthrich K
    J Mol Biol; 2002 May; 319(1):209-27. PubMed ID: 12051947
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Towards fully automated structure-based NMR resonance assignment of ¹⁵N-labeled proteins from automatically picked peaks.
    Jang R; Gao X; Li M
    J Comput Biol; 2011 Mar; 18(3):347-63. PubMed ID: 21385039
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Insights into degradation mechanism of N-end rule substrates by p62/SQSTM1 autophagy adapter.
    Kwon DH; Park OH; Kim L; Jung YO; Park Y; Jeong H; Hyun J; Kim YK; Song HK
    Nat Commun; 2018 Aug; 9(1):3291. PubMed ID: 30120248
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Applications of NMR and ITC for the Study of the Kinetics of Carbohydrate Binding by AMPK β-Subunit Carbohydrate-Binding Modules.
    Gooley PR; Koay A; Mobbs JI
    Methods Mol Biol; 2018; 1732():87-98. PubMed ID: 29480470
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The direct determination of protein structure by NMR without assignment.
    Atkinson RA; Saudek V
    FEBS Lett; 2002 Jan; 510(1-2):1-4. PubMed ID: 11755519
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-resolution multi-dimensional NMR spectroscopy of proteins in human cells.
    Inomata K; Ohno A; Tochio H; Isogai S; Tenno T; Nakase I; Takeuchi T; Futaki S; Ito Y; Hiroaki H; Shirakawa M
    Nature; 2009 Mar; 458(7234):106-9. PubMed ID: 19262675
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.