These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 32237062)

  • 21. Integrated Bismuth Oxide Ultrathin Nanosheets/Carbon Foam Electrode for Highly Selective and Energy-Efficient Electrocatalytic Conversion of CO
    Meng FL; Zhang Q; Liu KH; Zhang XB
    Chemistry; 2020 Mar; 26(18):4013-4018. PubMed ID: 31482593
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Metal-Organic Frameworks and Their Derived Materials as Electrocatalysts and Photocatalysts for CO
    Zhang H; Li J; Tan Q; Lu L; Wang Z; Wu G
    Chemistry; 2018 Dec; 24(69):18137-18157. PubMed ID: 30160808
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Rational Design of a Hierarchical Tin Dendrite Electrode for Efficient Electrochemical Reduction of CO2.
    Won da H; Choi CH; Chung J; Chung MW; Kim EH; Woo SI
    ChemSusChem; 2015 Sep; 8(18):3092-8. PubMed ID: 26219092
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Elevating the p-band centre of SnO
    Fang D; Zhang L; Niu Y; Wang Y; Su Q; Wang J; Wang C
    Dalton Trans; 2022 Jan; 51(2):541-552. PubMed ID: 34928274
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Electrochemical Transformation of Facet-Controlled BiOI into Mesoporous Bismuth Nanosheets for Selective Electrocatalytic Reduction of CO
    Wu D; Liu J; Liang Y; Xiang K; Fu XZ; Luo JL
    ChemSusChem; 2019 Oct; 12(20):4700-4707. PubMed ID: 31407510
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Continuous efficient removal and inactivation mechanism of E. coli by bismuth-doped SnO
    Wang P; Deng Y; Hao L; Zhao L; Zhang X; Deng C; Liu H; Zhu M
    Environ Sci Pollut Res Int; 2019 Apr; 26(11):11399-11409. PubMed ID: 30805840
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Identification of a new substrate effect that enhances the electrocatalytic activity of dendritic tin in CO
    Zhang Y; Zhang X; Bond AM; Zhang J
    Phys Chem Chem Phys; 2018 Feb; 20(8):5936-5941. PubMed ID: 29423495
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Anodic SnO
    Ma R; Chen YL; Shen Y; Wang H; Zhang W; Pang SS; Huang J; Han Y; Zhao Y
    RSC Adv; 2020 Jun; 10(38):22828-22835. PubMed ID: 35514548
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Near-Unity Electrochemical CO
    Yang S; Liu Z; An H; Arnouts S; de Ruiter J; Rollier F; Bals S; Altantzis T; Figueiredo MC; Filot IAW; Hensen EJM; Weckhuysen BM; van der Stam W
    ACS Catal; 2022 Dec; 12(24):15146-15156. PubMed ID: 36570083
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Highly Efficient and Selective CO
    Tian J; Wang M; Shen M; Ma X; Hua Z; Zhang L; Shi J
    ChemSusChem; 2020 Dec; 13(23):6442-6448. PubMed ID: 33107175
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Lattice-Hydride Mechanism in Electrocatalytic CO
    Tang Q; Lee Y; Li DY; Choi W; Liu CW; Lee D; Jiang DE
    J Am Chem Soc; 2017 Jul; 139(28):9728-9736. PubMed ID: 28640611
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Zeolitic imidazolate framework-derived composites with SnO
    Guan Y; Liu Y; Yi J; Zhang J
    Dalton Trans; 2022 May; 51(18):7274-7283. PubMed ID: 35481494
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Boosted Electrocatalytic N
    Liu YP; Li YB; Zhang H; Chu K
    Inorg Chem; 2019 Aug; 58(15):10424-10431. PubMed ID: 31347359
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An Investigation of Electrocatalytic CO
    McKinnon M; Belkina V; Ngo KT; Ertem MZ; Grills DC; Rochford J
    Front Chem; 2019; 7():628. PubMed ID: 31608271
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Coupled Metal/Oxide Catalysts with Tunable Product Selectivity for Electrocatalytic CO
    Huo S; Weng Z; Wu Z; Zhong Y; Wu Y; Fang J; Wang H
    ACS Appl Mater Interfaces; 2017 Aug; 9(34):28519-28526. PubMed ID: 28786653
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Lattice-dislocated Bi nanosheets for electrocatalytic reduction of carbon dioxide to formate over a wide potential window.
    Wang Y; Gong H; Wang Y; Gao L
    J Colloid Interface Sci; 2022 Apr; 611():246-254. PubMed ID: 34953457
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Engineering Bismuth-Tin Interface in Bimetallic Aerogel with a 3D Porous Structure for Highly Selective Electrocatalytic CO
    Wu Z; Wu H; Cai W; Wen Z; Jia B; Wang L; Jin W; Ma T
    Angew Chem Int Ed Engl; 2021 May; 60(22):12554-12559. PubMed ID: 33720479
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nanoconfined Tin Oxide within N-Doped Nanocarbon Supported on Electrochemically Exfoliated Graphene for Efficient Electroreduction of CO
    Fu Y; Wang T; Zheng W; Lei C; Yang B; Chen J; Li Z; Lei L; Yuan C; Hou Y
    ACS Appl Mater Interfaces; 2020 Apr; 12(14):16178-16185. PubMed ID: 32186359
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Photocatalytic carbon dioxide reduction by copper oxide nanocluster-grafted niobate nanosheets.
    Yin G; Nishikawa M; Nosaka Y; Srinivasan N; Atarashi D; Sakai E; Miyauchi M
    ACS Nano; 2015 Feb; 9(2):2111-9. PubMed ID: 25629438
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Exfoliated 2D Layered and Nonlayered Metal Phosphorous Trichalcogenides Nanosheets as Promising Electrocatalysts for CO
    Wang H; Jiao Y; Wu B; Wang D; Hu Y; Liang F; Shen C; Knauer A; Ren D; Wang H; van Aken PA; Zhang H; Sofer Z; Grätzel M; Schaaf P
    Angew Chem Int Ed Engl; 2023 Apr; 62(17):e202217253. PubMed ID: 36744542
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.