These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 32237182)

  • 21. How monocular deprivation shifts ocular dominance in visual cortex of young mice.
    Frenkel MY; Bear MF
    Neuron; 2004 Dec; 44(6):917-23. PubMed ID: 15603735
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Gliotoxin-induced suppression of ocular dominance plasticity in kitten visual cortex.
    Imamura K; Mataga N; Watanabe Y
    Neurosci Res; 1993 Feb; 16(2):117-24. PubMed ID: 7683395
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of monocular deprivation on the spatial pattern of visually induced expression of c-Fos protein.
    Nakadate K; Imamura K; Watanabe Y
    Neuroscience; 2012 Jan; 202():17-28. PubMed ID: 22178607
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Molecular mechanism for loss of visual cortical responsiveness following brief monocular deprivation.
    Heynen AJ; Yoon BJ; Liu CH; Chung HJ; Huganir RL; Bear MF
    Nat Neurosci; 2003 Aug; 6(8):854-62. PubMed ID: 12886226
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Swept contrast visual evoked potentials and their plasticity following monocular deprivation in mice.
    Lickey ME; Pham TA; Gordon B
    Vision Res; 2004 Dec; 44(28):3381-7. PubMed ID: 15536006
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Binocular Disparity Selectivity Weakened after Monocular Deprivation in Mouse V1.
    Scholl B; Pattadkal JJ; Priebe NJ
    J Neurosci; 2017 Jul; 37(27):6517-6526. PubMed ID: 28576937
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A semi-persistent adult ocular dominance plasticity in visual cortex is stabilized by activated CREB.
    Pham TA; Graham SJ; Suzuki S; Barco A; Kandel ER; Gordon B; Lickey ME
    Learn Mem; 2004; 11(6):738-47. PubMed ID: 15537732
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Metabolic and neurochemical plasticity of gamma-aminobutyric acid-immunoreactive neurons in the adult macaque striate cortex following monocular impulse blockade: quantitative electron microscopic analysis.
    Nie F; Wong-Riley MT
    J Comp Neurol; 1996 Jul; 370(3):350-66. PubMed ID: 8799861
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cross-modal plasticity for the spatial processing of sounds in visually deprived subjects.
    Collignon O; Voss P; Lassonde M; Lepore F
    Exp Brain Res; 2009 Jan; 192(3):343-58. PubMed ID: 18762928
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A disinhibitory microcircuit initiates critical-period plasticity in the visual cortex.
    Kuhlman SJ; Olivas ND; Tring E; Ikrar T; Xu X; Trachtenberg JT
    Nature; 2013 Sep; 501(7468):543-6. PubMed ID: 23975100
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Layer- and cell-type-specific subthreshold and suprathreshold effects of long-term monocular deprivation in rat visual cortex.
    Medini P
    J Neurosci; 2011 Nov; 31(47):17134-48. PubMed ID: 22114282
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparison of plasticity in vivo and in vitro in the developing visual cortex of normal and protein kinase A RIbeta-deficient mice.
    Hensch TK; Gordon JA; Brandon EP; McKnight GS; Idzerda RL; Stryker MP
    J Neurosci; 1998 Mar; 18(6):2108-17. PubMed ID: 9482797
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Recovery of binocular responses after brief monocular deprivation in kittens.
    Kameyama K; Hata Y; Tsumoto T
    Neuroreport; 2005 Sep; 16(13):1447-50. PubMed ID: 16110269
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Neuregulin-1/ErbB4 Signaling Regulates Visual Cortical Plasticity.
    Sun Y; Ikrar T; Davis MF; Gong N; Zheng X; Luo ZD; Lai C; Mei L; Holmes TC; Gandhi SP; Xu X
    Neuron; 2016 Oct; 92(1):160-173. PubMed ID: 27641496
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Experience leaves a lasting structural trace in cortical circuits.
    Hofer SB; Mrsic-Flogel TD; Bonhoeffer T; Hübener M
    Nature; 2009 Jan; 457(7227):313-7. PubMed ID: 19005470
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Homeostatic plasticity in the visual thalamus by monocular deprivation.
    Krahe TE; Guido W
    J Neurosci; 2011 May; 31(18):6842-9. PubMed ID: 21543614
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structural dynamics of synapses in vivo correlate with functional changes during experience-dependent plasticity in visual cortex.
    Tropea D; Majewska AK; Garcia R; Sur M
    J Neurosci; 2010 Aug; 30(33):11086-95. PubMed ID: 20720116
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Anatomical correlates of functional plasticity in mouse visual cortex.
    Antonini A; Fagiolini M; Stryker MP
    J Neurosci; 1999 Jun; 19(11):4388-406. PubMed ID: 10341241
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Short-term monocular deprivation alters early components of visual evoked potentials.
    Lunghi C; Berchicci M; Morrone MC; Di Russo F
    J Physiol; 2015 Oct; 593(19):4361-72. PubMed ID: 26119530
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Neuroplasticity in adult human visual cortex.
    Castaldi E; Lunghi C; Morrone MC
    Neurosci Biobehav Rev; 2020 May; 112():542-552. PubMed ID: 32092315
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.