These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 32237713)

  • 1. Advanced X-ray Shielding Materials Enabled by the Coordination of Well-Dispersed High Atomic Number Elements in Natural Leather.
    Wang Y; Ding P; Xu H; Li Q; Guo J; Liao X; Shi B
    ACS Appl Mater Interfaces; 2020 Apr; 12(17):19916-19926. PubMed ID: 32237713
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Research on X-ray shielding performance of wearable Bi/Ce-natural leather composite materials.
    Li Q; Wang Y; Xiao X; Zhong R; Liao J; Guo J; Liao X; Shi B
    J Hazard Mater; 2020 Nov; 398():122943. PubMed ID: 32512452
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lightweight and Flexible Bi@Bi-La Natural Leather Composites with Superb X-ray Radiation Shielding Performance and Low Secondary Radiation.
    Li Q; Zhong R; Xiao X; Liao J; Liao X; Shi B
    ACS Appl Mater Interfaces; 2020 Dec; 12(48):54117-54126. PubMed ID: 33201659
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Absorption and Reflection Contributions to the High Performance of Electromagnetic Waves Shielding Materials Fabricated by Compositing Leather Matrix with Metal Nanoparticles.
    Liu C; Wang X; Huang X; Liao X; Shi B
    ACS Appl Mater Interfaces; 2018 Apr; 10(16):14036-14044. PubMed ID: 29611417
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flexible stretchable low-energy X-ray (30-80 keV) radiation shielding material: Low-melting-point Ga
    Wu J; Hu J; Wang K; Zhai Y; Wang Z; Feng Y; Fan H; Wang K; Duan Y
    Appl Radiat Isot; 2023 Feb; 192():110603. PubMed ID: 36508958
    [TBL] [Abstract][Full Text] [Related]  

  • 6. X-ray Shielding, Mechanical, Physical, and Water Absorption Properties of Wood/PVC Composites Containing Bismuth Oxide.
    Poltabtim W; Wimolmala E; Markpin T; Sombatsompop N; Rosarpitak V; Saenboonruang K
    Polymers (Basel); 2021 Jul; 13(13):. PubMed ID: 34279356
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-efficiency, flexibility and lead-free X-ray shielding multilayered polymer composites: layered structure design and shielding mechanism.
    Li Z; Zhou W; Zhang X; Gao Y; Guo S
    Sci Rep; 2021 Feb; 11(1):4384. PubMed ID: 33623062
    [TBL] [Abstract][Full Text] [Related]  

  • 8. LDPE/Bismuth Oxide Nanocomposite: Preparation, Characterization and Application in X-ray Shielding.
    Alshahri S; Alsuhybani M; Alosime E; Almurayshid M; Alrwais A; Alotaibi S
    Polymers (Basel); 2021 Sep; 13(18):. PubMed ID: 34577982
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultralight and Superelastic Gd
    Xu L; Huang L; Yu J; Si Y; Ding B
    Nano Lett; 2022 Nov; 22(21):8711-8718. PubMed ID: 36315062
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multicomponent X-ray Shielding Using Sulfated Cerium Oxide and Bismuth Halide Composites.
    Mahalingam S; Kwon DS; Kang SG; Kim J
    Molecules; 2023 Aug; 28(16):. PubMed ID: 37630298
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Emission of fluorescent x-radiation from non-lead based shielding materials of protective clothing: a radiobiological problem?
    Schmid E; Panzer W; Schlattl H; Eder H
    J Radiol Prot; 2012 Sep; 32(3):N129-39. PubMed ID: 22809876
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of the size of nano- and microparticles and photon energy on mass attenuation coefficients of bismuth-silicon shields in diagnostic radiology.
    Malekzadeh R; Mehnati P; Sooteh MY; Mesbahi A
    Radiol Phys Technol; 2019 Sep; 12(3):325-334. PubMed ID: 31385155
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rare-Earth Oxides as Alternative High-Energy Photon Protective Fillers in HDPE Composites: Theoretical Aspects.
    Saenboonruang K; Poltabtim W; Thumwong A; Pianpanit T; Rattanapongs C
    Polymers (Basel); 2021 Jun; 13(12):. PubMed ID: 34200711
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Shielding effects of metallic encapsulations and radiographic contrast agents for catheter-based intravascular brachytherapy.
    Nath R; Yue N
    Cardiovasc Radiat Med; 2001; 2(2):93-103. PubMed ID: 11340013
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Radiation attenuation by lead and nonlead materials used in radiation shielding garments.
    McCaffrey JP; Shen H; Downton B; Mainegra-Hing E
    Med Phys; 2007 Feb; 34(2):530-7. PubMed ID: 17388170
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative X-ray Shielding Properties of Single-Layered and Multi-Layered Bi
    Thumwong A; Darachai J; Saenboonruang K
    Polymers (Basel); 2022 Apr; 14(9):. PubMed ID: 35566961
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Radiation shielding materials and radiation scatter effects for interventional radiology (IR) physicians.
    McCaffrey JP; Tessier F; Shen H
    Med Phys; 2012 Jul; 39(7):4537-46. PubMed ID: 22830785
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Shielding behavior of artisanal bricks against ionizing photons.
    Escalera-Velasco LA; Molina-Contreras JR; Hernández-Murillo CG; De León-Martínez HA; Vega-Carrillo HR; Rodríguez-Rodríguez JA; López-Salas IA
    Appl Radiat Isot; 2020 Jul; 161():109167. PubMed ID: 32250843
    [TBL] [Abstract][Full Text] [Related]  

  • 19. THE ABSORPTION PROPERTIES OF LEAD-FREE GARMENTS FOR USE IN RADIATION PROTECTION.
    Çetin H; Yurt A; Yüksel SH
    Radiat Prot Dosimetry; 2017 Apr; 173(4):345-350. PubMed ID: 26884505
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel method of utilization of hot dip galvanizing slag using the heat waste from itself for protection from radiation.
    Dong M; Xue X; Kumar A; Yang H; Sayyed MI; Liu S; Bu E
    J Hazard Mater; 2018 Feb; 344():602-614. PubMed ID: 29112919
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.