These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 32237759)
1. Amplification of explosive width in complex networks. Khanra P; Kundu P; Pal P; Ji P; Hens C Chaos; 2020 Mar; 30(3):031101. PubMed ID: 32237759 [TBL] [Abstract][Full Text] [Related]
2. Transition to synchrony in degree-frequency correlated Sakaguchi-Kuramoto model. Kundu P; Khanra P; Hens C; Pal P Phys Rev E; 2017 Nov; 96(5-1):052216. PubMed ID: 29347755 [TBL] [Abstract][Full Text] [Related]
3. Explosive synchronization coexists with classical synchronization in the Kuramoto model. Danziger MM; Moskalenko OI; Kurkin SA; Zhang X; Havlin S; Boccaletti S Chaos; 2016 Jun; 26(6):065307. PubMed ID: 27369869 [TBL] [Abstract][Full Text] [Related]
4. Explosive synchronization in interlayer phase-shifted Kuramoto oscillators on multiplex networks. Kumar A; Jalan S Chaos; 2021 Apr; 31(4):041103. PubMed ID: 34251235 [TBL] [Abstract][Full Text] [Related]
5. Model reduction for the Kuramoto-Sakaguchi model: The importance of nonentrained rogue oscillators. Yue W; Smith LD; Gottwald GA Phys Rev E; 2020 Jun; 101(6-1):062213. PubMed ID: 32688503 [TBL] [Abstract][Full Text] [Related]
6. Synchronization transition in Sakaguchi-Kuramoto model on complex networks with partial degree-frequency correlation. Kundu P; Pal P Chaos; 2019 Jan; 29(1):013123. PubMed ID: 30709149 [TBL] [Abstract][Full Text] [Related]
7. Explosive synchronization with partial degree-frequency correlation. Pinto RS; Saa A Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):022818. PubMed ID: 25768563 [TBL] [Abstract][Full Text] [Related]
8. Influence of stochastic perturbations on the cluster explosive synchronization of second-order Kuramoto oscillators on networks. Cao L; Tian C; Wang Z; Zhang X; Liu Z Phys Rev E; 2018 Feb; 97(2-1):022220. PubMed ID: 29548119 [TBL] [Abstract][Full Text] [Related]
9. Exact explosive synchronization transitions in Kuramoto oscillators with time-delayed coupling. Wu H; Kang L; Liu Z; Dhamala M Sci Rep; 2018 Oct; 8(1):15521. PubMed ID: 30341395 [TBL] [Abstract][Full Text] [Related]
10. Explosive synchronization transitions in complex neural networks. Chen H; He G; Huang F; Shen C; Hou Z Chaos; 2013 Sep; 23(3):033124. PubMed ID: 24089960 [TBL] [Abstract][Full Text] [Related]
11. Impact of phase lag on synchronization in frustrated Kuramoto model with higher-order interactions. Dutta S; Mondal A; Kundu P; Khanra P; Pal P; Hens C Phys Rev E; 2023 Sep; 108(3-1):034208. PubMed ID: 37849147 [TBL] [Abstract][Full Text] [Related]
12. Development of structural correlations and synchronization from adaptive rewiring in networks of Kuramoto oscillators. Papadopoulos L; Kim JZ; Kurths J; Bassett DS Chaos; 2017 Jul; 27(7):073115. PubMed ID: 28764402 [TBL] [Abstract][Full Text] [Related]
13. Criterion for the emergence of explosive synchronization transitions in networks of phase oscillators. Zhu L; Tian L; Shi D Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Oct; 88(4):042921. PubMed ID: 24229263 [TBL] [Abstract][Full Text] [Related]
14. Determination of the critical coupling of explosive synchronization transitions in scale-free networks by mean-field approximations. Peron TK; Rodrigues FA Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 2):056108. PubMed ID: 23214844 [TBL] [Abstract][Full Text] [Related]
15. Repulsive synchronization in complex networks. Gao YC; Fu CJ; Cai SM; Yang C; Eugene Stanley H Chaos; 2019 May; 29(5):053130. PubMed ID: 31154772 [TBL] [Abstract][Full Text] [Related]
16. Explosive synchronization in frequency displaced multiplex networks. Jalan S; Kumar A; Leyva I Chaos; 2019 Apr; 29(4):041102. PubMed ID: 31042936 [TBL] [Abstract][Full Text] [Related]
17. Reduction of oscillator dynamics on complex networks to dynamics on complete graphs through virtual frequencies. Gao J; Efstathiou K Phys Rev E; 2020 Feb; 101(2-1):022302. PubMed ID: 32168684 [TBL] [Abstract][Full Text] [Related]
18. Route to synchronization in coupled phase oscillators with frequency-dependent coupling: Explosive or continuous? Kumar M; Gupta S Phys Rev E; 2022 Oct; 106(4-1):044310. PubMed ID: 36397479 [TBL] [Abstract][Full Text] [Related]
19. Matrix coupling and generalized frustration in Kuramoto oscillators. Buzanello GL; Barioni AED; de Aguiar MAM Chaos; 2022 Sep; 32(9):093130. PubMed ID: 36182358 [TBL] [Abstract][Full Text] [Related]
20. Explosive synchronization enhanced by time-delayed coupling. Peron TK; Rodrigues FA Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 2):016102. PubMed ID: 23005486 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]