These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 32237788)

  • 1. Fractional order oxygen-plankton system under climate change.
    Ozarslan R; Sekerci Y
    Chaos; 2020 Mar; 30(3):033131. PubMed ID: 32237788
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mathematical Modelling of Plankton-Oxygen Dynamics Under the Climate Change.
    Sekerci Y; Petrovskii S
    Bull Math Biol; 2015 Dec; 77(12):2325-53. PubMed ID: 26607949
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Major restructuring of marine plankton assemblages under global warming.
    Benedetti F; Vogt M; Elizondo UH; Righetti D; Zimmermann NE; Gruber N
    Nat Commun; 2021 Sep; 12(1):5226. PubMed ID: 34471105
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Consistent trophic amplification of marine biomass declines under climate change.
    Kwiatkowski L; Aumont O; Bopp L
    Glob Chang Biol; 2019 Jan; 25(1):218-229. PubMed ID: 30295401
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Climate impact on plankton ecosystems in the Northeast Atlantic.
    Richardson AJ; Schoeman DS
    Science; 2004 Sep; 305(5690):1609-12. PubMed ID: 15361622
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Five Years of Experimental Warming Increases the Biodiversity and Productivity of Phytoplankton.
    Yvon-Durocher G; Allen AP; Cellamare M; Dossena M; Gaston KJ; Leitao M; Montoya JM; Reuman DC; Woodward G; Trimmer M
    PLoS Biol; 2015 Dec; 13(12):e1002324. PubMed ID: 26680314
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomass changes and trophic amplification of plankton in a warmer ocean.
    Chust G; Allen JI; Bopp L; Schrum C; Holt J; Tsiaras K; Zavatarelli M; Chifflet M; Cannaby H; Dadou I; Daewel U; Wakelin SL; Machu E; Pushpadas D; Butenschon M; Artioli Y; Petihakis G; Smith C; Garçon V; Goubanova K; Le Vu B; Fach BA; Salihoglu B; Clementi E; Irigoien X
    Glob Chang Biol; 2014 Jul; 20(7):2124-39. PubMed ID: 24604761
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A two-timescale model of plankton-oxygen dynamics predicts formation of oxygen minimum zones and global anoxia.
    Roy Chowdhury P; Banerjee M; Petrovskii S
    J Math Biol; 2024 May; 89(1):8. PubMed ID: 38801565
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Competing effects of toxin-producing phytoplankton on overall plankton populations in the bay of Bengal.
    Roy S; Alam S; Chattopadhyay J
    Bull Math Biol; 2006 Nov; 68(8):2303-20. PubMed ID: 16804650
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of two toxin-producing plankton and their effect on phytoplankton-zooplankton system--a mathematical study supported by experimental findings.
    Sarkar RR; Pal S; Chattopadhyay J
    Biosystems; 2005 Apr; 80(1):11-23. PubMed ID: 15740831
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catchment vegetation and temperature mediating trophic interactions and production in plankton communities.
    Finstad AG; Nilsen EB; Hendrichsen DK; Schmidt NM
    PLoS One; 2017; 12(4):e0174904. PubMed ID: 28414736
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regime shifts and ecological catastrophes in a model of plankton-oxygen dynamics under the climate change.
    Petrovskii S; Sekerci Y; Venturino E
    J Theor Biol; 2017 Jul; 424():91-109. PubMed ID: 28456463
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of sea surface warming on marine plankton.
    Lewandowska AM; Boyce DG; Hofmann M; Matthiessen B; Sommer U; Worm B
    Ecol Lett; 2014 May; 17(5):614-23. PubMed ID: 24575918
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Minimal Model of Plankton Systems Revisited with Spatial Diffusion and Maturation Delay.
    Zhao J; Tian JP; Wei J
    Bull Math Biol; 2016 Mar; 78(3):381-412. PubMed ID: 26934887
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ocean net heat flux influences seasonal to interannual patterns of plankton abundance.
    Smyth TJ; Allen I; Atkinson A; Bruun JT; Harmer RA; Pingree RD; Widdicombe CE; Somerfield PJ
    PLoS One; 2014; 9(2):e98709. PubMed ID: 24918906
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of nanoparticles on plankton dynamics: a mathematical model.
    Rana S; Samanta S; Bhattacharya S; Al-Khaled K; Goswami A; Chattopadhyay J
    Biosystems; 2015 Jan; 127():28-41. PubMed ID: 25448892
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Warming accelerates termination of a phytoplankton spring bloom by fungal parasites.
    Frenken T; Velthuis M; de Senerpont Domis LN; Stephan S; Aben R; Kosten S; van Donk E; Van de Waal DB
    Glob Chang Biol; 2016 Jan; 22(1):299-309. PubMed ID: 26488235
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fish-mediated plankton responses to increased temperature in subtropical aquatic mesocosm ecosystems: Implications for lake management.
    He H; Jin H; Jeppesen E; Li K; Liu Z; Zhang Y
    Water Res; 2018 Nov; 144():304-311. PubMed ID: 30071399
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of climate change on bioaccumulation and biomagnification of polycyclic aromatic hydrocarbons in the planktonic food web of a subtropical shallow eutrophic lake in China.
    Tao Y; Xue B; Lei G; Liu F; Wang Z
    Environ Pollut; 2017 Apr; 223():624-634. PubMed ID: 28173953
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling species richness and abundance of phytoplankton and zooplankton in radioactively contaminated water bodies.
    Shuryak I
    J Environ Radioact; 2018 Dec; 192():14-25. PubMed ID: 29883873
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.