These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 32237826)

  • 1. Separation of overlapping sources in bioacoustic mixtures.
    Izadi MR; Stevenson R; Kloepper LN
    J Acoust Soc Am; 2020 Mar; 147(3):1688. PubMed ID: 32237826
    [TBL] [Abstract][Full Text] [Related]  

  • 2. BioCPPNet: automatic bioacoustic source separation with deep neural networks.
    Bermant PC
    Sci Rep; 2021 Dec; 11(1):23502. PubMed ID: 34873197
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Separating overlapping bat calls with a bi-directional long short-term memory network.
    Zhang K; Liu T; Song S; Zhao X; Sun S; Metzner W; Feng J; Liu Y
    Integr Zool; 2022 Sep; 17(5):741-751. PubMed ID: 33881210
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Robust sound event detection in bioacoustic sensor networks.
    Lostanlen V; Salamon J; Farnsworth A; Kelling S; Bello JP
    PLoS One; 2019; 14(10):e0214168. PubMed ID: 31647815
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two-microphone separation of speech mixtures.
    Pedersen MS; Wang D; Larsen J; Kjems U
    IEEE Trans Neural Netw; 2008 Mar; 19(3):475-92. PubMed ID: 18334366
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bat detective-Deep learning tools for bat acoustic signal detection.
    Mac Aodha O; Gibb R; Barlow KE; Browning E; Firman M; Freeman R; Harder B; Kinsey L; Mead GR; Newson SE; Pandourski I; Parsons S; Russ J; Szodoray-Paradi A; Szodoray-Paradi F; Tilova E; Girolami M; Brostow G; Jones KE
    PLoS Comput Biol; 2018 Mar; 14(3):e1005995. PubMed ID: 29518076
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recording animal vocalizations from a UAV: bat echolocation during roost re-entry.
    Kloepper LN; Kinniry M
    Sci Rep; 2018 May; 8(1):7779. PubMed ID: 29773821
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Open Set Bioacoustic Signal Classification based on Class Anchor Clustering with Closed Set Unknown Bioacoustic Signals.
    Ko K; Lee B; Kim D; Hong J; Ko H
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38082607
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DMMAN: A two-stage audio-visual fusion framework for sound separation and event localization.
    Hu R; Zhou S; Tang ZR; Chang S; Huang Q; Liu Y; Han W; Wu EQ
    Neural Netw; 2021 Jan; 133():229-239. PubMed ID: 33232859
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Time-frequency and advanced frequency estimation techniques for the investigation of bat echolocation calls.
    Kopsinis Y; Aboutanios E; Waters DA; McLaughlin S
    J Acoust Soc Am; 2010 Feb; 127(2):1124-34. PubMed ID: 20136233
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of climate on acoustic signals: does atmospheric sound absorption matter for bird song and bat echolocation?
    Snell-Rood EC
    J Acoust Soc Am; 2012 Feb; 131(2):1650-8. PubMed ID: 22352535
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A modeling approach to explain pulse design in bats.
    Boonman A; Ostwald J
    Biol Cybern; 2007 Aug; 97(2):159-72. PubMed ID: 17610077
    [TBL] [Abstract][Full Text] [Related]  

  • 13. How frequency hopping suppresses pulse-echo ambiguity in bat biosonar.
    Ming C; Bates ME; Simmons JA
    Proc Natl Acad Sci U S A; 2020 Jul; 117(29):17288-17295. PubMed ID: 32632013
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multi-component separation and analysis of bat echolocation calls.
    DiCecco J; Gaudette JE; Simmons JA
    J Acoust Soc Am; 2013 Jan; 133(1):538-46. PubMed ID: 23297925
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Convolutional neural network for detecting odontocete echolocation clicks.
    Luo W; Yang W; Zhang Y
    J Acoust Soc Am; 2019 Jan; 145(1):EL7. PubMed ID: 30710948
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Separating overlapping click trains originating from multiple individuals in echolocation recordings.
    Starkhammar J; Nilsson J; Amundin M; Kuczaj SA; Almqvist M; Persson HW
    J Acoust Soc Am; 2011 Jan; 129(1):458-66. PubMed ID: 21303025
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Weakly-supervised convolutional neural networks of renal tumor segmentation in abdominal CTA images.
    Yang G; Wang C; Yang J; Chen Y; Tang L; Shao P; Dillenseger JL; Shu H; Luo L
    BMC Med Imaging; 2020 Apr; 20(1):37. PubMed ID: 32293303
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Frequency organization of delay-sensitive neurons in the auditory cortex of the FM bat, Myotis lucifugus.
    Paschal WG; Wong D
    J Neurophysiol; 1994 Jul; 72(1):366-79. PubMed ID: 7965020
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neural computations for sound pattern recognition: evidence for summation of an array of frequency filters in an echolocating bat.
    Roverud RC
    J Neurosci; 1993 Jun; 13(6):2306-12. PubMed ID: 8501509
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid frequency control of sonar sounds by the FM bat, Miniopterus fuliginosus, in response to spectral overlap.
    Hase K; Miyamoto T; Kobayasi KI; Hiryu S
    Behav Processes; 2016 Jul; 128():126-33. PubMed ID: 27157002
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.