These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
110 related articles for article (PubMed ID: 32237829)
41. A Flow Velocity Measurement Method Based on a PVDF Piezoelectric Sensor. Li Q; Xing J; Shang D; Wang Y Sensors (Basel); 2019 Apr; 19(7):. PubMed ID: 30959943 [TBL] [Abstract][Full Text] [Related]
42. Theoretical model of membrane acoustic absorber with compact magnet. Zhao J; Li X; Zhu L; Wang Y; Wang W; Li X; Liu Y J Acoust Soc Am; 2021 Jul; 150(1):410. PubMed ID: 34340466 [TBL] [Abstract][Full Text] [Related]
43. Polyvinylidene fluoride film sensors in collocated feedback structural control: application for suppressing impact-induced disturbances. Ma CC; Chuang KC; Pan SY IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Dec; 58(12):2539-54. PubMed ID: 23443690 [TBL] [Abstract][Full Text] [Related]
44. The noise absorption prediction of a combined and independent absorber under different conditions and at different frequencies, using the new Engineering Noise Control Software (ENC). Jafari Malekabad A; Zare S; Ghotbi Ravandi MR; Ahmadi S; Esmaeili R; Mohammadi Dameneh M Heliyon; 2022 Nov; 8(11):e11556. PubMed ID: 36406710 [TBL] [Abstract][Full Text] [Related]
45. Study on a Hexagonal Acoustic Metamaterial Cell of Multiple Parallel-Connection Resonators with Tunable Perforating Rate. Cheng H; Yang F; Shen X; Yang X; Zhang X; Bi S Materials (Basel); 2023 Jul; 16(15):. PubMed ID: 37570082 [TBL] [Abstract][Full Text] [Related]
47. Evaluation of piezoelectric property of reduced graphene oxide (rGO)–poly(vinylidene fluoride) nanocomposites. Alamusi ; Xue J; Wu L; Hu N; Qiu J; Chang C; Atobe S; Fukunaga H; Watanabe T; Liu Y; Ning H; Li J; Li Y; Zhao Y Nanoscale; 2012 Nov; 4(22):7250-5. PubMed ID: 23281491 [TBL] [Abstract][Full Text] [Related]
48. One-Step Solvent Evaporation-Assisted 3D Printing of Piezoelectric PVDF Nanocomposite Structures. Bodkhe S; Turcot G; Gosselin FP; Therriault D ACS Appl Mater Interfaces; 2017 Jun; 9(24):20833-20842. PubMed ID: 28553704 [TBL] [Abstract][Full Text] [Related]
49. Application of Adaptive Wave Cancellation Underwater to a Piezoelectric-Material-Based Multilayer Sensor. Lee H; Park H; Park K; Yi H Sensors (Basel); 2019 Dec; 20(1):. PubMed ID: 31878227 [TBL] [Abstract][Full Text] [Related]
50. High Performance Flexible Actuator of Urchin-Like ZnO Nanostructure/Polyvinylenefluoride Hybrid Thin Film with Graphene Electrodes for Acoustic Generator and Analyzer. Cheong OJ; Lee JS; Kim JH; Jang J Small; 2016 May; 12(19):2567-74. PubMed ID: 27028524 [TBL] [Abstract][Full Text] [Related]
51. A versatile acoustically active surface based on piezoelectric microstructures. Han J; Saravanapavanantham M; Chua MR; Lang JH; Bulović V Microsyst Nanoeng; 2022; 8():55. PubMed ID: 35646386 [TBL] [Abstract][Full Text] [Related]
52. Experimental study of the acoustical properties of polymers utilized to construct PVDF ultrasonic transducers and the acousto-electric properties of PVDF and P(VDF/TrFE) films. Bloomfield PE; Lo WJ; Lewin PA IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(6):1397-405. PubMed ID: 18238685 [TBL] [Abstract][Full Text] [Related]
53. Molecular modeling of the piezoelectric properties of ferroelectric composites containing polyvinylidene fluoride (PVDF) and either graphene or graphene oxide. Bystrov VS; Bdikin IK; Silibin M; Karpinsky D; Kopyl S; Paramonova EV; Goncalves G J Mol Model; 2017 Apr; 23(4):128. PubMed ID: 28321656 [TBL] [Abstract][Full Text] [Related]
55. Some considerations on the use of space sound absorbers with next-generation materials reflecting COVID situations in Japan: additional sound absorption for post-pandemic challenges in indoor acoustic environments. Sakagami K; Okuzono T UCL Open Environ; 2020; 2():e012. PubMed ID: 37229290 [TBL] [Abstract][Full Text] [Related]
56. Acoustic characteristics of microperforated plate with variable cross-sectional holes. Jiang C; Li X; Xiao W; Zhang B J Acoust Soc Am; 2021 Sep; 150(3):1652. PubMed ID: 34598632 [TBL] [Abstract][Full Text] [Related]
57. Flexural vibration of perforated plates and porous elastic materials under acoustic loading. Takahashi D; Tanaka M J Acoust Soc Am; 2002 Oct; 112(4):1456-64. PubMed ID: 12398453 [TBL] [Abstract][Full Text] [Related]
58. Large Piezoelectric Strain in Sub-10 Nanometer Two-Dimensional Polyvinylidene Fluoride Nanoflakes. Hussain N; Zhang MH; Zhang Q; Zhou Z; Xu X; Murtaza M; Zhang R; Wei H; Ou G; Wang D; Wang K; Li JF; Wu H ACS Nano; 2019 Apr; 13(4):4496-4506. PubMed ID: 30883093 [TBL] [Abstract][Full Text] [Related]
59. Spring-Based Active Shock Absorber Systems with Piezoelectric Energy Harvesters. Shin DJ; Yoon S; Han WH; Kim J; Cho KH; Koh JH J Nanosci Nanotechnol; 2019 Mar; 19(3):1538-1542. PubMed ID: 30469219 [TBL] [Abstract][Full Text] [Related]
60. Active control of acoustic reflection, absorption, and transmission using thin panel speakers. Zhu H; Rajamani R; Stelson KA J Acoust Soc Am; 2003 Feb; 113(2):852-70. PubMed ID: 12597180 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]