These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 32237868)
1. Phonation threshold pressure using a 3-mass model of phonation with empirical pressure values. Perrine BL; Scherer RC; Fulcher LP; Zhai G J Acoust Soc Am; 2020 Mar; 147(3):1727. PubMed ID: 32237868 [TBL] [Abstract][Full Text] [Related]
2. The phonation critical condition in rectangular glottis with wide prephonatory gaps. Tao C; Jiang JJ J Acoust Soc Am; 2008 Mar; 123(3):1637-41. PubMed ID: 18345851 [TBL] [Abstract][Full Text] [Related]
3. Using a vertical three-mass computational model of the vocal folds to match human phonation of three adult males. Perrine BL; Scherer RC J Acoust Soc Am; 2023 Sep; 154(3):1505-1525. PubMed ID: 37695295 [TBL] [Abstract][Full Text] [Related]
4. Further studies of phonation threshold pressure in a physical model of the vocal fold mucosa. Chan RW; Titze IR; Titze MR J Acoust Soc Am; 1997 Jun; 101(6):3722-7. PubMed ID: 9193059 [TBL] [Abstract][Full Text] [Related]
6. The Effects of Humming on the Prephonatory Vocal Fold Motions Under High-Speed Digital Imaging in Nondysphonic Speakers. Iwahashi T; Ogawa M; Hosokawa K; Kato C; Inohara H J Voice; 2017 May; 31(3):291-299. PubMed ID: 27726905 [TBL] [Abstract][Full Text] [Related]
7. Intraglottal Pressure: A Comparison Between Male and Female Larynxes. Li S; Scherer RC; Wan M; Wang S; Song B J Voice; 2020 Nov; 34(6):813-822. PubMed ID: 31311664 [TBL] [Abstract][Full Text] [Related]
8. The effect of glottal angle on intraglottal pressure. Li S; Scherer RC; Wan M; Wang S; Wu H J Acoust Soc Am; 2006 Jan; 119(1):539-48. PubMed ID: 16454307 [TBL] [Abstract][Full Text] [Related]
9. Estimation of impact stress using an aeroelastic model of voice production. Horácek J; Laukkanen AM; Sidlof P Logoped Phoniatr Vocol; 2007; 32(4):185-92. PubMed ID: 17990190 [TBL] [Abstract][Full Text] [Related]
10. An experimental analysis of the pressures and flows within a driven mechanical model of phonation. Kucinschi BR; Scherer RC; Dewitt KJ; Ng TT J Acoust Soc Am; 2006 May; 119(5 Pt 1):3011-21. PubMed ID: 16708957 [TBL] [Abstract][Full Text] [Related]
11. Effects of Vertical Glottal Duct Length on Intraglottal Pressures and Phonation Threshold Pressure in the Uniform Glottis. Li S; Scherer RC; Fulcher LP; Wang X; Qiu L; Wan M; Wang S J Voice; 2018 Jan; 32(1):8-22. PubMed ID: 28599995 [TBL] [Abstract][Full Text] [Related]
12. Asymmetric airflow and vibration induced by the Coanda effect in a symmetric model of the vocal folds. Tao C; Zhang Y; Hottinger DG; Jiang JJ J Acoust Soc Am; 2007 Oct; 122(4):2270-8. PubMed ID: 17902863 [TBL] [Abstract][Full Text] [Related]
13. Regulation of glottal closure and airflow in a three-dimensional phonation model: implications for vocal intensity control. Zhang Z J Acoust Soc Am; 2015 Feb; 137(2):898-910. PubMed ID: 25698022 [TBL] [Abstract][Full Text] [Related]
14. Relation between the phonation threshold pressure and the prephonatory glottal width in a rectangular glottis. Lucero JC J Acoust Soc Am; 1996 Oct; 100(4 Pt 1):2551-4. PubMed ID: 8865659 [No Abstract] [Full Text] [Related]
15. Glottal flow through a two-mass model: comparison of Navier-Stokes solutions with simplified models. de Vries MP; Schutte HK; Veldman AE; Verkerke GJ J Acoust Soc Am; 2002 Apr; 111(4):1847-53. PubMed ID: 12002868 [TBL] [Abstract][Full Text] [Related]
16. Numerical study of the effects of inferior and superior vocal fold surface angles on vocal fold pressure distributions. Li S; Scherer RC; Wan M; Wang S; Wu H J Acoust Soc Am; 2006 May; 119(5 Pt 1):3003-10. PubMed ID: 16708956 [TBL] [Abstract][Full Text] [Related]
17. Phonation threshold pressure: comparison of calculations and measurements taken with physical models of the vocal fold mucosa. Fulcher LP; Scherer RC J Acoust Soc Am; 2011 Sep; 130(3):1597-605. PubMed ID: 21895097 [TBL] [Abstract][Full Text] [Related]
18. The effect of three-dimensional glottal geometry on intraglottal quasi-steady flow distributions and their relationship with phonation. Li S; Scherer RC; Wan M; Wang S Sci China C Life Sci; 2006 Feb; 49(1):82-8. PubMed ID: 16544579 [TBL] [Abstract][Full Text] [Related]
19. Intraglottal pressure profiles for a symmetric and oblique glottis with a divergence angle of 10 degrees. Scherer RC; Shinwari D; De Witt KJ; Zhang C; Kucinschi BR; Afjeh AA J Acoust Soc Am; 2001 Apr; 109(4):1616-30. PubMed ID: 11325132 [TBL] [Abstract][Full Text] [Related]
20. Pressure distributions in a static physical model of the uniform glottis: entrance and exit coefficients. Fulcher LP; Scherer RC; Powell T J Acoust Soc Am; 2011 Mar; 129(3):1548-53. PubMed ID: 21428518 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]