These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
269 related articles for article (PubMed ID: 32238418)
21. In vitro characterization of sarizotan metabolism: hepatic clearance, identification and characterization of metabolites, drug-metabolizing enzyme identification, and evaluation of cytochrome p450 inhibition. Gallemann D; Wimmer E; Höfer CC; Freisleben A; Fluck M; Ladstetter B; Dolgos H Drug Metab Dispos; 2010 Jun; 38(6):905-16. PubMed ID: 20219851 [TBL] [Abstract][Full Text] [Related]
22. Engineering of cytochrome P450 3A4 for enhanced peroxide-mediated substrate oxidation using directed evolution and site-directed mutagenesis. Kumar S; Liu H; Halpert JR Drug Metab Dispos; 2006 Dec; 34(12):1958-65. PubMed ID: 16987939 [TBL] [Abstract][Full Text] [Related]
23. Comparison of the substrate specificities of human liver cytochrome P450s 2C9 and 2C18: application to the design of a specific substrate of CYP 2C18. Minoletti C; Dijols S; Dansette PM; Mansuy D Biochemistry; 1999 Jun; 38(24):7828-36. PubMed ID: 10387023 [TBL] [Abstract][Full Text] [Related]
24. Interaction between 3,4‑dichlorophenyl‑propenoyl‑sec.‑butylamine (3,4‑DCPB), an antiepileptic drug, and cytochrome P450 in rat liver microsomes and recombinant human enzymes in vitro. Cheng HX; Lu YY; Wang X; Ren H; Li Q; Wang SM; Ding Y; Lou YQ; Zhang GL Eur J Pharm Sci; 2018 Oct; 123():241-248. PubMed ID: 30010032 [TBL] [Abstract][Full Text] [Related]
25. Automated definition of the enzymology of drug oxidation by the major human drug metabolizing cytochrome P450s. McGinnity DF; Parker AJ; Soars M; Riley RJ Drug Metab Dispos; 2000 Nov; 28(11):1327-34. PubMed ID: 11038161 [TBL] [Abstract][Full Text] [Related]
26. Controlling substrate specificity and product regio- and stereo-selectivities of P450 enzymes without mutagenesis. Polic V; Auclair K Bioorg Med Chem; 2014 Oct; 22(20):5547-54. PubMed ID: 25035263 [TBL] [Abstract][Full Text] [Related]
27. The oxidative metabolism of dimemorfan by human cytochrome P450 enzymes. Chou YC; Chung YT; Liu TY; Wang SY; Chau GY; Chi CW; Soucek P; Krausz KW; Gelboin HV; Lee CH; Ueng YF J Pharm Sci; 2010 Feb; 99(2):1063-77. PubMed ID: 19593786 [TBL] [Abstract][Full Text] [Related]
28. Metabolism of the active metabolite of quetiapine, N-desalkylquetiapine in vitro. Bakken GV; Molden E; Knutsen K; Lunder N; Hermann M Drug Metab Dispos; 2012 Sep; 40(9):1778-84. PubMed ID: 22688609 [TBL] [Abstract][Full Text] [Related]
29. Biological diversity of cytochrome P450 redox partner systems. McLean KJ; Luciakova D; Belcher J; Tee KL; Munro AW Adv Exp Med Biol; 2015; 851():299-317. PubMed ID: 26002740 [TBL] [Abstract][Full Text] [Related]
30. Development of an improved Amplex Red peroxidation activity assay for screening cytochrome P450 variants and identification of a novel mutant of the thermophilic CYP119. Başlar MS; Sakallı T; Güralp G; Kestevur Doğru E; Haklı E; Surmeli NB J Biol Inorg Chem; 2020 Oct; 25(7):949-962. PubMed ID: 32924072 [TBL] [Abstract][Full Text] [Related]
31. Organization of multiple cytochrome P450s with NADPH-cytochrome P450 reductase in membranes. Backes WL; Kelley RW Pharmacol Ther; 2003 May; 98(2):221-33. PubMed ID: 12725870 [TBL] [Abstract][Full Text] [Related]
32. Evaluation of recombinant cytochrome P450 enzymes as an in vitro system for metabolic clearance predictions. Stringer RA; Strain-Damerell C; Nicklin P; Houston JB Drug Metab Dispos; 2009 May; 37(5):1025-34. PubMed ID: 19196847 [TBL] [Abstract][Full Text] [Related]
33. Engineering cytochrome P450 enzyme systems for biomedical and biotechnological applications. Li Z; Jiang Y; Guengerich FP; Ma L; Li S; Zhang W J Biol Chem; 2020 Jan; 295(3):833-849. PubMed ID: 31811088 [TBL] [Abstract][Full Text] [Related]
34. Immobilized Cytochrome P450 for Monitoring of P450-P450 Interactions and Metabolism. Bostick CD; Hickey KM; Wollenberg LA; Flora DR; Tracy TS; Gannett PM Drug Metab Dispos; 2016 May; 44(5):741-9. PubMed ID: 26961240 [TBL] [Abstract][Full Text] [Related]
35. Cytochrome P450 monooxygenases: an update on perspectives for synthetic application. Urlacher VB; Girhard M Trends Biotechnol; 2012 Jan; 30(1):26-36. PubMed ID: 21782265 [TBL] [Abstract][Full Text] [Related]
37. Peroxide-supported in-vitro cytochrome P450 activities in Haemonchus contortus. Kotze AC Int J Parasitol; 1999 Mar; 29(3):389-96. PubMed ID: 10333321 [TBL] [Abstract][Full Text] [Related]
38. Human CYP2C19 is a major omeprazole 5-hydroxylase, as demonstrated with recombinant cytochrome P450 enzymes. Karam WG; Goldstein JA; Lasker JM; Ghanayem BI Drug Metab Dispos; 1996 Oct; 24(10):1081-7. PubMed ID: 8894508 [TBL] [Abstract][Full Text] [Related]
39. Interindividual variation in relative CYP1A2/3A4 phenotype influences susceptibility of clozapine oxidation to cytochrome P450-specific inhibition in human hepatic microsomes. Zhang WV; D'Esposito F; Edwards RJ; Ramzan I; Murray M Drug Metab Dispos; 2008 Dec; 36(12):2547-55. PubMed ID: 18809730 [TBL] [Abstract][Full Text] [Related]
40. Differential roles of Glu318 and Thr319 in cytochrome P450 1A2 catalysis supported by NADPH-cytochrome P450 reductase and tert-butyl hydroperoxide. Hiroya K; Murakami Y; Shimizu T; Hatano M; Ortiz de Montellano PR Arch Biochem Biophys; 1994 May; 310(2):397-401. PubMed ID: 7910007 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]