These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 32238431)

  • 1. An arrestin-1 surface opposite of its interface with photoactivated rhodopsin engages with enolase-1.
    Miranda CJ; Fernandez N; Kamel N; Turner D; Benzenhafer D; Bolch SN; Andring JT; McKenna R; Smith WC
    J Biol Chem; 2020 May; 295(19):6498-6508. PubMed ID: 32238431
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Helix formation in arrestin accompanies recognition of photoactivated rhodopsin.
    Feuerstein SE; Pulvermüller A; Hartmann R; Granzin J; Stoldt M; Henklein P; Ernst OP; Heck M; Willbold D; Koenig BW
    Biochemistry; 2009 Nov; 48(45):10733-42. PubMed ID: 19835414
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An additional phosphate-binding element in arrestin molecule. Implications for the mechanism of arrestin activation.
    Vishnivetskiy SA; Schubert C; Climaco GC; Gurevich YV; Velez MG; Gurevich VV
    J Biol Chem; 2000 Dec; 275(52):41049-57. PubMed ID: 11024026
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Novel Polar Core and Weakly Fixed C-Tail in Squid Arrestin Provide New Insight into Interaction with Rhodopsin.
    Bandyopadhyay A; Van Eps N; Eger BT; Rauscher S; Yedidi RS; Moroni T; West GM; Robinson KA; Griffin PR; Mitchell J; Ernst OP
    J Mol Biol; 2018 Oct; 430(21):4102-4118. PubMed ID: 30120952
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formation and decay of the arrestin·rhodopsin complex in native disc membranes.
    Beyrière F; Sommer ME; Szczepek M; Bartl FJ; Hofmann KP; Heck M; Ritter E
    J Biol Chem; 2015 May; 290(20):12919-28. PubMed ID: 25847250
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The orientation and stability of the GPCR-Arrestin complex in a lipid bilayer.
    Wang D; Yu H; Liu X; Liu J; Song C
    Sci Rep; 2017 Dec; 7(1):16985. PubMed ID: 29209002
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamics of arrestin-rhodopsin interactions: loop movement is involved in arrestin activation and receptor binding.
    Sommer ME; Farrens DL; McDowell JH; Weber LA; Smith WC
    J Biol Chem; 2007 Aug; 282(35):25560-8. PubMed ID: 17606620
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional comparisons of visual arrestins in rod photoreceptors of transgenic mice.
    Chan S; Rubin WW; Mendez A; Liu X; Song X; Hanson SM; Craft CM; Gurevich VV; Burns ME; Chen J
    Invest Ophthalmol Vis Sci; 2007 May; 48(5):1968-75. PubMed ID: 17460248
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The arrestin-1 finger loop interacts with two distinct conformations of active rhodopsin.
    Elgeti M; Kazmin R; Rose AS; Szczepek M; Hildebrand PW; Bartl FJ; Scheerer P; Hofmann KP
    J Biol Chem; 2018 Mar; 293(12):4403-4410. PubMed ID: 29363577
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The rhodopsin-arrestin-1 interaction in bicelles.
    Chen Q; Vishnivetskiy SA; Zhuang T; Cho MK; Thaker TM; Sanders CR; Gurevich VV; Iverson TM
    Methods Mol Biol; 2015; 1271():77-95. PubMed ID: 25697518
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure-based biophysical analysis of the interaction of rhodopsin with G protein and arrestin.
    Sommer ME; Elgeti M; Hildebrand PW; Szczepek M; Hofmann KP; Scheerer P
    Methods Enzymol; 2015; 556():563-608. PubMed ID: 25857800
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystallization and preliminary X-ray analysis of human liver alpha-enolase.
    Wang J; Zhou YF; Li LF; Su XD
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2009 Mar; 65(Pt 3):288-90. PubMed ID: 19255486
    [TBL] [Abstract][Full Text] [Related]  

  • 13. N-terminal and C-terminal domains of arrestin both contribute in binding to rhodopsin.
    Skegro D; Pulvermüller A; Krafft B; Granzin J; Hofmann KP; Büldt G; Schlesinger R
    Photochem Photobiol; 2007; 83(2):385-92. PubMed ID: 17132044
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser.
    Kang Y; Zhou XE; Gao X; He Y; Liu W; Ishchenko A; Barty A; White TA; Yefanov O; Han GW; Xu Q; de Waal PW; Ke J; Tan MH; Zhang C; Moeller A; West GM; Pascal BD; Van Eps N; Caro LN; Vishnivetskiy SA; Lee RJ; Suino-Powell KM; Gu X; Pal K; Ma J; Zhi X; Boutet S; Williams GJ; Messerschmidt M; Gati C; Zatsepin NA; Wang D; James D; Basu S; Roy-Chowdhury S; Conrad CE; Coe J; Liu H; Lisova S; Kupitz C; Grotjohann I; Fromme R; Jiang Y; Tan M; Yang H; Li J; Wang M; Zheng Z; Li D; Howe N; Zhao Y; Standfuss J; Diederichs K; Dong Y; Potter CS; Carragher B; Caffrey M; Jiang H; Chapman HN; Spence JC; Fromme P; Weierstall U; Ernst OP; Katritch V; Gurevich VV; Griffin PR; Hubbell WL; Stevens RC; Cherezov V; Melcher K; Xu HE
    Nature; 2015 Jul; 523(7562):561-7. PubMed ID: 26200343
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential phosphorylation of the rhodopsin cytoplasmic tail mediates the binding of arrestin and its splice variant, p44.
    Ascano M; Robinson PR
    Biochemistry; 2006 Feb; 45(7):2398-407. PubMed ID: 16475829
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The arrestin-bound conformation and dynamics of the phosphorylated carboxy-terminal region of rhodopsin.
    Kisselev OG; McDowell JH; Hargrave PA
    FEBS Lett; 2004 Apr; 564(3):307-11. PubMed ID: 15111114
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rhodopsin TM6 can interact with two separate and distinct sites on arrestin: evidence for structural plasticity and multiple docking modes in arrestin-rhodopsin binding.
    Sinha A; Jones Brunette AM; Fay JF; Schafer CT; Farrens DL
    Biochemistry; 2014 May; 53(20):3294-307. PubMed ID: 24724832
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of regions of arrestin that bind to rhodopsin.
    Smith WC; McDowell JH; Dugger DR; Miller R; Arendt A; Popp MP; Hargrave PA
    Biochemistry; 1999 Mar; 38(9):2752-61. PubMed ID: 10052946
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Arrestin-Bound Rhodopsin: A Molecular Structure and its Impact on the Development of Biased GPCR Ligands.
    Möller D; Gmeiner P
    Angew Chem Int Ed Engl; 2015 Nov; 54(45):13166-8. PubMed ID: 26361376
    [No Abstract]   [Full Text] [Related]  

  • 20. The interaction with the cytoplasmic loops of rhodopsin plays a crucial role in arrestin activation and binding.
    Raman D; Osawa S; Gurevich VV; Weiss ER
    J Neurochem; 2003 Mar; 84(5):1040-50. PubMed ID: 12603828
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.