These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 32238617)

  • 1. Can a highly accurate multi-class SSMVEP BCI induce sensory-motor rhythm in the sensorimotor area?
    Zhang X; Xu G; Ravi A; Pearce S; Jiang N
    J Neural Eng; 2021 Mar; 18(3):. PubMed ID: 32238617
    [No Abstract]   [Full Text] [Related]  

  • 2. A Novel Online Action Observation-Based Brain-Computer Interface That Enhances Event-Related Desynchronization.
    Zhang X; Hou W; Wu X; Feng S; Chen L
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():2605-2614. PubMed ID: 34878977
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of fatigue on steady state motion visual evoked potentials: Optimised stimulus parameters for a zoom motion-based brain-computer interface.
    Chai X; Zhang Z; Guan K; Zhang T; Xu J; Niu H
    Comput Methods Programs Biomed; 2020 Nov; 196():105650. PubMed ID: 32682092
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DF-SSmVEP: Dual Frequency Aggregated Steady-State Motion Visual Evoked Potential Design with Bifold Canonical Correlation Analysis.
    Karimi R; Mohammadi A; Asif A; Benali H
    Sensors (Basel); 2022 Mar; 22(7):. PubMed ID: 35408182
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancing Detection of SSMVEP Induced by Action Observation Stimuli Based on Task-Related Component Analysis.
    Zhang X; Hou W; Wu X; Chen L; Jiang N
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34450713
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced System Robustness of Asynchronous BCI in Augmented Reality Using Steady-State Motion Visual Evoked Potential.
    Ravi A; Lu J; Pearce S; Jiang N
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():85-95. PubMed ID: 34990366
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Steady-State Motion Visual Evoked Potential (SSMVEP) Based on Equal Luminance Colored Enhancement.
    Yan W; Xu G; Li M; Xie J; Han C; Zhang S; Luo A; Chen C
    PLoS One; 2017; 12(1):e0169642. PubMed ID: 28060906
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiple-command single-frequency SSVEP-based BCI system using flickering action video.
    Lim H; Ku J
    J Neurosci Methods; 2019 Feb; 314():21-27. PubMed ID: 30659844
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly Interactive Brain-Computer Interface Based on Flicker-Free Steady-State Motion Visual Evoked Potential.
    Han C; Xu G; Xie J; Chen C; Zhang S
    Sci Rep; 2018 Apr; 8(1):5835. PubMed ID: 29643430
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Performance of the Action Observation-Based Brain-Computer Interface in Stroke Patients and Gaze Metrics Analysis.
    Zhang X; He L; Gao Q; Jiang N
    IEEE Trans Neural Syst Rehabil Eng; 2024; 32():1370-1379. PubMed ID: 38512735
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of Modern Highly Interactive Flicker-Free Steady State Motion Visual Evoked Potentials for Practical Brain-Computer Interfaces.
    Stawicki P; Volosyak I
    Brain Sci; 2020 Sep; 10(10):. PubMed ID: 32998379
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Study of Steady State Motion Visual Evoked Potential-based Visual Stimulation of BCI System].
    Liu G; Zhang Z; Chai X; Lu Y; Fan Y; Niu H
    Zhongguo Yi Liao Qi Xie Za Zhi; 2018 Sep; 42(5):313-316. PubMed ID: 30358339
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Study on the effects of brightness contrast on steady-state motion visual evoked potential.
    Wenqiang Yan ; Guanghua Xu ; Jun Xie ; Min Li ; Sicong Zhang ; Ailing Luo
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():2263-2266. PubMed ID: 29060348
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of SSMVEP-based EEG signals using multiplex limited penetrable horizontal visibility graph.
    Gao ZK; Guo W; Cai Q; Ma C; Zhang YB; Kurths J
    Chaos; 2019 Jul; 29(7):073119. PubMed ID: 31370406
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel motion coupling coding method for brain-computer interfaces.
    Yan W; Xu G
    Biomed Tech (Berl); 2020 Oct; 65(5):531-541. PubMed ID: 32463381
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparison of three brain-computer interfaces based on event-related desynchronization, steady state visual evoked potentials, or a hybrid approach using both signals.
    Brunner C; Allison BZ; Altstätter C; Neuper C
    J Neural Eng; 2011 Apr; 8(2):025010. PubMed ID: 21436538
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Role of Visual Noise in Influencing Mental Load and Fatigue in a Steady-State Motion Visual Evoked Potential-Based Brain-Computer Interface.
    Xie J; Xu G; Luo A; Li M; Zhang S; Han C; Yan W
    Sensors (Basel); 2017 Aug; 17(8):. PubMed ID: 28805731
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Steady-State Visual Evoked Potential-Based Brain-Computer Interface Using a Novel Visual Stimulus with Quick Response (QR) Code Pattern.
    Siribunyaphat N; Punsawad Y
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214341
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Radial Zoom Motion-Based Paradigm for Steady State Motion Visual Evoked Potentials.
    Chai X; Zhang Z; Guan K; Liu G; Niu H
    Front Hum Neurosci; 2019; 13():127. PubMed ID: 31040775
    [No Abstract]   [Full Text] [Related]  

  • 20. Mental fatigue in central-field and peripheral-field steady-state visually evoked potential and its effects on event-related potential responses.
    Lee MH; Williamson J; Lee YE; Lee SW
    Neuroreport; 2018 Oct; 29(15):1301-1308. PubMed ID: 30102642
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.