These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

334 related articles for article (PubMed ID: 32238631)

  • 1. [AI-based QSAR Modeling for Prediction of Active Compounds in MIE/AOP].
    Uesawa Y
    Yakugaku Zasshi; 2020; 140(4):499-505. PubMed ID: 32238631
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Machine Learning and Artificial Intelligence in Toxicological Sciences.
    Lin Z; Chou WC
    Toxicol Sci; 2022 Aug; 189(1):7-19. PubMed ID: 35861448
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of QSAR models using artificial neural network analysis for risk assessment of repeated-dose, reproductive, and developmental toxicities of cosmetic ingredients.
    Hisaki T; Aiba Née Kaneko M; Yamaguchi M; Sasa H; Kouzuki H
    J Toxicol Sci; 2015 Apr; 40(2):163-80. PubMed ID: 25786522
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comprehension of drug toxicity: software and databases.
    Toropov AA; Toropova AP; Raska I; Leszczynska D; Leszczynski J
    Comput Biol Med; 2014 Feb; 45():20-5. PubMed ID: 24480159
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Challenge for Adverse Outcome Pathway (AOP)-based Chemical Safety Assessment].
    Yamada T; Ashikaga T; Kojima H; Hirose A
    Yakugaku Zasshi; 2020; 140(4):481-484. PubMed ID: 32238628
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In Silico Study of In Vitro GPCR Assays by QSAR Modeling.
    Mansouri K; Judson RS
    Methods Mol Biol; 2016; 1425():361-81. PubMed ID: 27311474
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel two-step hierarchical quantitative structure-activity relationship modeling work flow for predicting acute toxicity of chemicals in rodents.
    Zhu H; Ye L; Richard A; Golbraikh A; Wright FA; Rusyn I; Tropsha A
    Environ Health Perspect; 2009 Aug; 117(8):1257-64. PubMed ID: 19672406
    [TBL] [Abstract][Full Text] [Related]  

  • 8. QSAR Methods.
    Gini G
    Methods Mol Biol; 2016; 1425():1-20. PubMed ID: 27311459
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Target-specific toxicity knowledgebase (TsTKb): a novel toolkit for in silico predictive toxicology.
    Li Y; Idakwo G; Thangapandian S; Chen M; Hong H; Zhang C; Gong P
    J Environ Sci Health C Environ Carcinog Ecotoxicol Rev; 2018; 36(4):219-236. PubMed ID: 30426823
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Artificial Intelligence-Based Toxicity Prediction of Environmental Chemicals: Future Directions for Chemical Management Applications.
    Jeong J; Choi J
    Environ Sci Technol; 2022 Jun; 56(12):7532-7543. PubMed ID: 35666838
    [TBL] [Abstract][Full Text] [Related]  

  • 11. QSAR Modeling of ToxCast Assays Relevant to the Molecular Initiating Events of AOPs Leading to Hepatic Steatosis.
    Gadaleta D; Manganelli S; Roncaglioni A; Toma C; Benfenati E; Mombelli E
    J Chem Inf Model; 2018 Aug; 58(8):1501-1517. PubMed ID: 29949360
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In Silico Prediction of Chemical-Induced Hepatocellular Hypertrophy Using Molecular Descriptors.
    Ambe K; Ishihara K; Ochibe T; Ohya K; Tamura S; Inoue K; Yoshida M; Tohkin M
    Toxicol Sci; 2018 Apr; 162(2):667-675. PubMed ID: 29309657
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Advancing Computational Toxicology in the Big Data Era by Artificial Intelligence: Data-Driven and Mechanism-Driven Modeling for Chemical Toxicity.
    Ciallella HL; Zhu H
    Chem Res Toxicol; 2019 Apr; 32(4):536-547. PubMed ID: 30907586
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploring QSTR analysis of the toxicity of phenols and thiophenols using machine learning methods.
    Asadollahi-Baboli M
    Environ Toxicol Pharmacol; 2012 Nov; 34(3):826-31. PubMed ID: 23068157
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Formation of mechanistic categories and local models to facilitate the prediction of toxicity.
    Cronin MT; Enoch SJ; Hewitt M; Madden JC
    ALTEX; 2011; 28(1):45-9. PubMed ID: 21311849
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemical hazard prediction and hypothesis testing using quantitative adverse outcome pathways.
    Perkins EJ; Gayen K; Shoemaker JE; Antczak P; Burgoon L; Falciani F; Gutsell S; Hodges G; Kienzler A; Knapen D; McBride M; Willett C; Doyle FJ; Garcia-Reyero N
    ALTEX; 2019; 36(1):91-102. PubMed ID: 30332685
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hybrid non-animal modeling: A mechanistic approach to predict chemical hepatotoxicity.
    Chung E; Wen X; Jia X; Ciallella HL; Aleksunes LM; Zhu H
    J Hazard Mater; 2024 Jun; 471():134297. PubMed ID: 38677119
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Building on a solid foundation: SAR and QSAR as a fundamental strategy to reduce animal testing.
    Sullivan KM; Manuppello JR; Willett CE
    SAR QSAR Environ Res; 2014; 25(5):357-65. PubMed ID: 24773450
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Probabilistic hazard assessment for skin sensitization potency by dose-response modeling using feature elimination instead of quantitative structure-activity relationships.
    Luechtefeld T; Maertens A; McKim JM; Hartung T; Kleensang A; Sá-Rocha V
    J Appl Toxicol; 2015 Nov; 35(11):1361-1371. PubMed ID: 26046447
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A three-tier QSAR modeling strategy for estimating eye irritation potential of diverse chemicals in rabbit for regulatory purposes.
    Basant N; Gupta S; Singh KP
    Regul Toxicol Pharmacol; 2016 Jun; 77():282-91. PubMed ID: 27018829
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.