These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 32238695)

  • 21. Modelling cortical cataractogenesis. XXIX. Calpain proteolysis of lens fodrin in cataract.
    Kilic F; Trevithick JR
    Biochem Mol Biol Int; 1998 Aug; 45(5):963-78. PubMed ID: 9739461
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Regional distribution of lipids and phospholipase A2 activity in normal and cataractous rat lens.
    Cenedella RJ
    Curr Eye Res; 1985 Feb; 4(2):113-20. PubMed ID: 3987344
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Matrix metalloproteinases and tissue inhibitors of matrix metalloproteinases in the human lens: implications for cortical cataract formation.
    Sachdev NH; Di Girolamo N; Nolan TM; McCluskey PJ; Wakefield D; Coroneo MT
    Invest Ophthalmol Vis Sci; 2004 Nov; 45(11):4075-82. PubMed ID: 15505058
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Lipid peroxidation as a possible cause of cataract.
    Babizhayev MA; Deyev AI; Linberg LF
    Mech Ageing Dev; 1988 Jul; 44(1):69-89. PubMed ID: 3205065
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The anti-cataract molecular mechanism study in selenium cataract rats for baicalin ophthalmic nanoparticles.
    Li N; Han Z; Li L; Zhang B; Liu Z; Li J
    Drug Des Devel Ther; 2018; 12():1399-1411. PubMed ID: 29872263
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Drevogenin D prevents selenite-induced oxidative stress and calpain activation in cultured rat lens.
    Biju PG; Rooban BN; Lija Y; Devi VG; Sahasranamam V; Abraham A
    Mol Vis; 2007 Jul; 13():1121-9. PubMed ID: 17653057
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cortical and subcapsular cataracts: significance of physical forces.
    Pau H
    Ophthalmologica; 2006; 220(1):1-5. PubMed ID: 16374041
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Changes in calpain II mRNA in young rat lens during maturation and cataract formation.
    Ma H; Shih M; Throneberg DB; David LL; Shearer TR
    Exp Eye Res; 1997 Mar; 64(3):437-45. PubMed ID: 9196396
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Spherical aberration reduction in nuclear cataracts.
    Lee JH; Choo HG; Kim SW
    Graefes Arch Clin Exp Ophthalmol; 2016 Jun; 254(6):1127-33. PubMed ID: 26984747
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An impediment to glutathione diffusion in older normal human lenses: a possible precondition for nuclear cataract.
    Sweeney MH; Truscott RJ
    Exp Eye Res; 1998 Nov; 67(5):587-95. PubMed ID: 9878221
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Toxicological characterization of N-methyl-N-nitrosourea-induced cataract in rats by LC/MS-based metabonomic analysis.
    Miyazono Y; Harada K; Sugiyama K; Ueno M; Torii M; Kato I; Matsuura H; Hirata K
    J Appl Toxicol; 2011 Oct; 31(7):655-62. PubMed ID: 21218499
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Altered DNA Methylation and Expression Profiles of 8-Oxoguanine DNA Glycosylase 1 in Lens Tissue from Age-related Cataract Patients.
    Wang Y; Li F; Zhang G; Kang L; Qin B; Guan H
    Curr Eye Res; 2015; 40(8):815-21. PubMed ID: 25310012
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparison of the lens opacities classification system II and Lensmeter 701.
    Rouhiainen P; Rouhiainen H; Notkola IL; Salonen JT
    Am J Ophthalmol; 1993 Nov; 116(5):617-21. PubMed ID: 8238223
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Central compaction in the process of lens growth as indicated by lamellar cataract.
    Brown NA; Sparrow JM; Bron AJ
    Br J Ophthalmol; 1988 Jul; 72(7):538-44. PubMed ID: 3415946
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Regulatory effect of chrysin on expression of lenticular calcium transporters, calpains, and apoptotic-cascade components in selenite-induced cataract.
    Sundararajan M; Thomas PA; Teresa PA; Anbukkarasi M; Geraldine P
    Mol Vis; 2016; 22():401-23. PubMed ID: 27168717
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Specific restriction of cholesterol from cortical lens gap junctional membrane in the U18666A cataract.
    Fleschner CR; Cenedella RJ
    Curr Eye Res; 1988 Oct; 7(10):1029-34. PubMed ID: 3229122
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Modification of membrane structures in cataract].
    Babizhaev MA; Deev AI
    Vopr Med Khim; 1987; 33(2):125-32. PubMed ID: 3604133
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A transgenic animal model of osmotic cataract. Part 1: over-expression of bovine Na+/myo-inositol cotransporter in lens fibers.
    Cammarata PR; Zhou C; Chen G; Singh I; Reeves RE; Kuszak JR; Robinson ML
    Invest Ophthalmol Vis Sci; 1999 Jul; 40(8):1727-37. PubMed ID: 10393042
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cataract development in a young patient with lathosterolosis: a clinicopathologic case report.
    Cavallini GM; Masini C; Chiesi C; Campi L; Rivasi F; Ferrari P
    Eur J Ophthalmol; 2009; 19(1):139-42. PubMed ID: 19123163
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Localization of low molecular weight crystallin peptides in the aging human lens using a MALDI mass spectrometry imaging approach.
    Su SP; McArthur JD; Andrew Aquilina J
    Exp Eye Res; 2010 Jul; 91(1):97-103. PubMed ID: 20433829
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.