BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

326 related articles for article (PubMed ID: 32238941)

  • 1. Recapitulating the human segmentation clock with pluripotent stem cells.
    Matsuda M; Yamanaka Y; Uemura M; Osawa M; Saito MK; Nagahashi A; Nishio M; Guo L; Ikegawa S; Sakurai S; Kihara S; Maurissen TL; Nakamura M; Matsumoto T; Yoshitomi H; Ikeya M; Kawakami N; Yamamoto T; Woltjen K; Ebisuya M; Toguchida J; Alev C
    Nature; 2020 Apr; 580(7801):124-129. PubMed ID: 32238941
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coupling delay controls synchronized oscillation in the segmentation clock.
    Yoshioka-Kobayashi K; Matsumiya M; Niino Y; Isomura A; Kori H; Miyawaki A; Kageyama R
    Nature; 2020 Apr; 580(7801):119-123. PubMed ID: 31915376
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An In Vitro Human Segmentation Clock Model Derived from Embryonic Stem Cells.
    Chu LF; Mamott D; Ni Z; Bacher R; Liu C; Swanson S; Kendziorski C; Stewart R; Thomson JA
    Cell Rep; 2019 Aug; 28(9):2247-2255.e5. PubMed ID: 31461642
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oscillatory gene expression and somitogenesis.
    Kageyama R; Niwa Y; Isomura A; González A; Harima Y
    Wiley Interdiscip Rev Dev Biol; 2012; 1(5):629-41. PubMed ID: 23799565
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dact1 presomitic mesoderm expression oscillates in phase with Axin2 in the somitogenesis clock of mice.
    Suriben R; Fisher DA; Cheyette BN
    Dev Dyn; 2006 Nov; 235(11):3177-83. PubMed ID: 17013874
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro characterization of the human segmentation clock.
    Diaz-Cuadros M; Wagner DE; Budjan C; Hubaud A; Tarazona OA; Donelly S; Michaut A; Al Tanoury Z; Yoshioka-Kobayashi K; Niino Y; Kageyama R; Miyawaki A; Touboul J; Pourquié O
    Nature; 2020 Apr; 580(7801):113-118. PubMed ID: 31915384
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oscillatory links of Fgf signaling and Hes7 in the segmentation clock.
    Harima Y; Kageyama R
    Curr Opin Genet Dev; 2013 Aug; 23(4):484-90. PubMed ID: 23465881
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of her1 and her7 mutants reveals a spatio temporal separation of the somite clock module.
    Choorapoikayil S; Willems B; Ströhle P; Gajewski M
    PLoS One; 2012; 7(6):e39073. PubMed ID: 22723933
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ES cell-derived presomitic mesoderm-like tissues for analysis of synchronized oscillations in the segmentation clock.
    Matsumiya M; Tomita T; Yoshioka-Kobayashi K; Isomura A; Kageyama R
    Development; 2018 Feb; 145(4):. PubMed ID: 29437832
    [TBL] [Abstract][Full Text] [Related]  

  • 10. From dynamic expression patterns to boundary formation in the presomitic mesoderm.
    Tiedemann HB; Schneltzer E; Zeiser S; Hoesel B; Beckers J; Przemeck GK; de Angelis MH
    PLoS Comput Biol; 2012; 8(6):e1002586. PubMed ID: 22761566
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Notch is a critical component of the mouse somitogenesis oscillator and is essential for the formation of the somites.
    Ferjentsik Z; Hayashi S; Dale JK; Bessho Y; Herreman A; De Strooper B; del Monte G; de la Pompa JL; Maroto M
    PLoS Genet; 2009 Sep; 5(9):e1000662. PubMed ID: 19779553
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wnt3a plays a major role in the segmentation clock controlling somitogenesis.
    Aulehla A; Wehrle C; Brand-Saberi B; Kemler R; Gossler A; Kanzler B; Herrmann BG
    Dev Cell; 2003 Mar; 4(3):395-406. PubMed ID: 12636920
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Imaging and manipulating the segmentation clock.
    Yoshioka-Kobayashi K; Kageyama R
    Cell Mol Life Sci; 2021 Feb; 78(4):1221-1231. PubMed ID: 33015720
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oscillatory Control of Notch Signaling in Development.
    Kageyama R; Shimojo H; Isomura A
    Adv Exp Med Biol; 2018; 1066():265-277. PubMed ID: 30030831
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Noncyclic Notch activity in the presomitic mesoderm demonstrates uncoupling of somite compartmentalization and boundary formation.
    Feller J; Schneider A; Schuster-Gossler K; Gossler A
    Genes Dev; 2008 Aug; 22(16):2166-71. PubMed ID: 18708576
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Periodic notch inhibition by lunatic fringe underlies the chick segmentation clock.
    Dale JK; Maroto M; Dequeant ML; Malapert P; McGrew M; Pourquie O
    Nature; 2003 Jan; 421(6920):275-8. PubMed ID: 12529645
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mesp2 and Tbx6 cooperatively create periodic patterns coupled with the clock machinery during mouse somitogenesis.
    Oginuma M; Niwa Y; Chapman DL; Saga Y
    Development; 2008 Aug; 135(15):2555-62. PubMed ID: 18579680
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mir-125a-5p-mediated regulation of Lfng is essential for the avian segmentation clock.
    Riley MF; Bochter MS; Wahi K; Nuovo GJ; Cole SE
    Dev Cell; 2013 Mar; 24(5):554-61. PubMed ID: 23484856
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oscillating expression of c-Hey2 in the presomitic mesoderm suggests that the segmentation clock may use combinatorial signaling through multiple interacting bHLH factors.
    Leimeister C; Dale K; Fischer A; Klamt B; Hrabe de Angelis M; Radtke F; McGrew MJ; Pourquié O; Gessler M
    Dev Biol; 2000 Nov; 227(1):91-103. PubMed ID: 11076679
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Somitogenesis in the anole lizard and alligator reveals evolutionary convergence and divergence in the amniote segmentation clock.
    Eckalbar WL; Lasku E; Infante CR; Elsey RM; Markov GJ; Allen AN; Corneveaux JJ; Losos JB; DeNardo DF; Huentelman MJ; Wilson-Rawls J; Rawls A; Kusumi K
    Dev Biol; 2012 Mar; 363(1):308-19. PubMed ID: 22178152
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.