These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 32239057)

  • 1. Enhanced Li-ion storage performance of novel tube-in-tube structured nanofibers with hollow metal oxide nanospheres covered with a graphitic carbon layer.
    Park GD; Kang YC
    Nanoscale; 2020 Apr; 12(15):8404-8414. PubMed ID: 32239057
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Superior Electrochemical Properties of Nanofibers Composed of Hollow CoFe2 O4 Nanospheres Covered with Onion-Like Graphitic Carbon.
    Hong YJ; Cho JS; Kang YC
    Chemistry; 2015 Dec; 21(50):18202-8. PubMed ID: 26542385
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Graphitic Carbon-Coated FeSe2 Hollow Nanosphere-Decorated Reduced Graphene Oxide Hybrid Nanofibers as an Efficient Anode Material for Sodium Ion Batteries.
    Cho JS; Lee JK; Kang YC
    Sci Rep; 2016 Apr; 6():23699. PubMed ID: 27033096
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hierarchically Well-Developed Porous Graphene Nanofibers Comprising N-Doped Graphitic C-Coated Cobalt Oxide Hollow Nanospheres As Anodes for High-Rate Li-Ion Batteries.
    Lee JS; Jo MS; Saroha R; Jung DS; Seon YH; Lee JS; Kang YC; Kang DW; Cho JS
    Small; 2020 Aug; 16(32):e2002213. PubMed ID: 32614514
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Yolk-shell-structured microspheres composed of N-doped-carbon-coated NiMoO
    Park GD; Hong JH; Lee JK; Kang YC
    Nanoscale; 2019 Jan; 11(2):631-638. PubMed ID: 30564807
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In situ formation of hollow graphitic carbon nanospheres in electrospun amorphous carbon nanofibers for high-performance Li-based batteries.
    Chen Y; Lu Z; Zhou L; Mai YW; Huang H
    Nanoscale; 2012 Nov; 4(21):6800-5. PubMed ID: 23000946
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of NiO Nanofibers Composed of Hollow Nanospheres with Controlled Sizes by the Nanoscale Kirkendall Diffusion Process and Their Electrochemical Properties.
    Cho JS; Lee SY; Ju HS; Kang YC
    ACS Appl Mater Interfaces; 2015 Nov; 7(46):25641-7. PubMed ID: 26548478
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design and Synthesis of Bubble-Nanorod-Structured Fe2O3-Carbon Nanofibers as Advanced Anode Material for Li-Ion Batteries.
    Cho JS; Hong YJ; Kang YC
    ACS Nano; 2015 Apr; 9(4):4026-35. PubMed ID: 25768655
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation of Hollow Fe
    Cho JS; Park JS; Kang YC
    Sci Rep; 2016 Dec; 6():38933. PubMed ID: 27958368
    [TBL] [Abstract][Full Text] [Related]  

  • 10. All-in-One Beaker Method for Large-Scale Production of Metal Oxide Hollow Nanospheres Using Nanoscale Kirkendall Diffusion.
    Cho JS; Kang YC
    ACS Appl Mater Interfaces; 2016 Feb; 8(6):3800-9. PubMed ID: 26799404
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanofibers Comprising Yolk-Shell Sn@void@SnO/SnO₂ and Hollow SnO/SnO₂ and SnO₂ Nanospheres via the Kirkendall Diffusion Effect and Their Electrochemical Properties.
    Cho JS; Kang YC
    Small; 2015 Sep; 11(36):4673-81. PubMed ID: 26058833
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiroom-structured multicomponent metal selenide-graphitic carbon-carbon nanotube hybrid microspheres as efficient anode materials for sodium-ion batteries.
    Park GD; Kang YC
    Nanoscale; 2018 May; 10(17):8125-8132. PubMed ID: 29671459
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lithium-ion storage performances of sunflower-like and nano-sized hollow SnO
    Park GD; Kim JH; Kang YC
    Nanoscale; 2018 Jul; 10(28):13531-13538. PubMed ID: 29974113
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nitrogen-Doped Hollow Carbon Nanospheres for High-Performance Li-Ion Batteries.
    Yang Y; Jin S; Zhang Z; Du Z; Liu H; Yang J; Xu H; Ji H
    ACS Appl Mater Interfaces; 2017 Apr; 9(16):14180-14186. PubMed ID: 28387517
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carbon-Encapsulated Hollow Porous Vanadium-Oxide Nanofibers for Improved Lithium Storage Properties.
    An GH; Lee DY; Ahn HJ
    ACS Appl Mater Interfaces; 2016 Aug; 8(30):19466-74. PubMed ID: 27404906
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coaxial Carbon/MnO
    Ni L; Zhao G; Wang Y; Wu Z; Wang W; Liao Y; Yang G; Diao G
    Chem Asian J; 2017 Dec; 12(24):3128-3134. PubMed ID: 29045068
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design and Synthesis of Spherical Multicomponent Aggregates Composed of Core-Shell, Yolk-Shell, and Hollow Nanospheres and Their Lithium-Ion Storage Performances.
    Park GD; Kang YC
    Small; 2018 Mar; 14(13):e1703957. PubMed ID: 29430830
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hollow Boron-Doped Si/SiO
    Zhang X; Huang L; Shen Q; Zhou X; Chen Y
    ACS Appl Mater Interfaces; 2019 Dec; 11(49):45612-45620. PubMed ID: 31725256
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Multi-Wall Sn/SnO
    Gao S; Wang N; Li S; Li D; Cui Z; Yue G; Liu J; Zhao X; Jiang L; Zhao Y
    Angew Chem Int Ed Engl; 2020 Feb; 59(6):2465-2472. PubMed ID: 31788929
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrochemical properties of fiber-in-tube- and filled-structured TiO2 nanofiber anode materials for lithium-ion batteries.
    Cho JS; Hong YJ; Kang YC
    Chemistry; 2015 Jul; 21(31):11082-7. PubMed ID: 26119328
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.