BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 32239059)

  • 1. Removing interference-based effects from infrared spectra - interference fringes re-revisited.
    Mayerhöfer TG; Pahlow S; Hübner U; Popp J
    Analyst; 2020 May; 145(9):3385-3394. PubMed ID: 32239059
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CaF
    Mayerhöfer TG; Pahlow S; Hübner U; Popp J
    Anal Chem; 2020 Jul; 92(13):9024-9031. PubMed ID: 32456415
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Removing interference-based effects from the infrared transflectance spectra of thin films on metallic substrates: a fast and wave optics conform solution.
    Mayerhöfer TG; Pahlow S; Hübner U; Popp J
    Analyst; 2018 Jun; 143(13):3164-3175. PubMed ID: 29878003
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Electric Field Standing Wave Effect in Infrared Transmission Spectroscopy.
    Mayerhöfer TG; Mutschke H; Popp J
    Chemphyschem; 2017 Oct; 18(20):2916-2923. PubMed ID: 28771914
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fringes in FTIR spectroscopy revisited: understanding and modelling fringes in infrared spectroscopy of thin films.
    Konevskikh T; Ponossov A; Blümel R; Lukacs R; Kohler A
    Analyst; 2015 Jun; 140(12):3969-80. PubMed ID: 25893226
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimating and correcting interference fringes in infrared spectra in infrared hyperspectral imaging.
    Azarfar G; Aboualizadeh E; Walter NM; Ratti S; Olivieri C; Norici A; Nasse M; Kohler A; Giordano M; Hirschmugl CJ
    Analyst; 2018 Sep; 143(19):4674-4683. PubMed ID: 30176033
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The electric field standing wave effect in infrared transflection spectroscopy.
    Mayerhöfer TG; Popp J
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 Feb; 191():283-289. PubMed ID: 29049975
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep learning for 'artefact' removal in infrared spectroscopy.
    Guo S; Mayerhöfer T; Pahlow S; Hübner U; Popp J; Bocklitz T
    Analyst; 2020 Aug; 145(15):5213-5220. PubMed ID: 32579623
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diffuse reflectance and transmittance spectra of an interference layer: 1. Model formulation and properties.
    Roos A; Rönnow D
    Appl Opt; 1994 Dec; 33(34):7908-17. PubMed ID: 20963005
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Removal of Etalon Features in the Far-Infrared-Terahertz Transmittance Spectra of Thin Polymer Films.
    Schade U; Cao D; Puskar L; Ritter E; Beckmann J
    Appl Spectrosc; 2020 Dec; 74(12):1530-1539. PubMed ID: 32268784
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study on the origin of linear deviation with the Beer-Lambert law in absorption spectroscopy by measuring sulfur dioxide.
    Li L; Zhao H; Ni N; Wang Y; Gao J; Gao Q; Zhang Y; Zhang Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Jul; 275():121192. PubMed ID: 35366524
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel model extended from the Bouguer-Lambert-Beer law can describe the non-linear absorbance of potassium dichromate solutions and microalgae suspensions.
    Yeh YC; Haasdonk B; Schmid-Staiger U; Stier M; Tovar GEM
    Front Bioeng Biotechnol; 2023; 11():1116735. PubMed ID: 37008024
    [No Abstract]   [Full Text] [Related]  

  • 13. Nanometric determination of the thickness of aqueous samples for accurate molar absorption coefficients of water-soluble molecules in the mid-infrared region.
    Gutierrez-Salazar MV; Lorenz-Fonfria VA
    Spectrochim Acta A Mol Biomol Spectrosc; 2024 Aug; 316():124378. PubMed ID: 38701577
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An automated approach for fringe frequency estimation and removal in infrared spectroscopy and hyperspectral imaging of biological samples.
    Solheim JH; Borondics F; Zimmermann B; Sandt C; Muthreich F; Kohler A
    J Biophotonics; 2021 Dec; 14(12):e202100148. PubMed ID: 34468082
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Employing Theories Far beyond Their Limits-The Case of the (Boguer-) Beer-Lambert Law.
    Mayerhöfer TG; Mutschke H; Popp J
    Chemphyschem; 2016 Jul; 17(13):1948-55. PubMed ID: 26990241
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A chemometric method for correcting Fourier transform infrared spectra of biomaterials for interference from water in KBr discs.
    Gordon SH; Mohamed A; Harry-O'kuru RE; Imam SH
    Appl Spectrosc; 2010 Apr; 64(4):448-57. PubMed ID: 20412631
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comment on the modified Beer-Lambert law for scattering media.
    Sassaroli A; Fantini S
    Phys Med Biol; 2004 Jul; 49(14):N255-7. PubMed ID: 15357206
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Origin of irregular X-ray mirage fringes from a bent, thin crystal.
    Fukamachi T; Kawamura T
    Acta Crystallogr A Found Adv; 2022 Sep; 78(Pt 5):422-429. PubMed ID: 36047399
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wavelength measurement by Fourier analysis of interference fringes through a plane parallel plate.
    Lee C; Choi H; Kim J; Cha M; Jin J
    Appl Opt; 2017 Dec; 56(35):9638-9643. PubMed ID: 29240108
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Handling of uncertainty due to interference fringe in FT-NIR transmittance spectroscopy - Performance comparison of interference elimination techniques using glucose-water system.
    Beganović A; Beć KB; Henn R; Huck CW
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 May; 197():208-215. PubMed ID: 29433857
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.