BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 3223989)

  • 1. ADP-ribosyl proteins formed by pertussis toxin are specifically cleaved by mercury ions.
    Meyer T; Koch R; Fanick W; Hilz H
    Biol Chem Hoppe Seyler; 1988 Jul; 369(7):579-83. PubMed ID: 3223989
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Different types of ADP-ribose protein bonds formed by botulinum C2 toxin, botulinum ADP-ribosyltransferase C3 and pertussis toxin.
    Aktories K; Just I; Rosenthal W
    Biochem Biophys Res Commun; 1988 Oct; 156(1):361-7. PubMed ID: 3140813
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pertussis toxin-catalyzed ADP-ribosylation of transducin. Cysteine 347 is the ADP-ribose acceptor site.
    West RE; Moss J; Vaughan M; Liu T; Liu TY
    J Biol Chem; 1985 Nov; 260(27):14428-30. PubMed ID: 3863818
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Failure of [32P]ADP-ribosylation by pertussis toxin to determine Gi alpha content in membranes from various human tissues. Improved radioimmunological quantification using the 125I-labelled C-terminal decapeptide of retinal transducin.
    Böhm M; Larisch K; Erdmann E; Camps M; Jakobs K; Gierschik P
    Biochem J; 1991 Jul; 277 ( Pt 1)(Pt 1):223-9. PubMed ID: 1906710
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Amino acid-specific ADP-ribosylation: structural characterization and chemical differentiation of ADP-ribose-cysteine adducts formed nonenzymatically and in a pertussis toxin-catalyzed reaction.
    McDonald LJ; Wainschel LA; Oppenheimer NJ; Moss J
    Biochemistry; 1992 Dec; 31(47):11881-7. PubMed ID: 1445918
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nonenzymic ADP-ribosylation of specific mitochondrial polypeptides.
    Hilz H; Koch R; Fanick W; Klapproth K; Adamietz P
    Proc Natl Acad Sci U S A; 1984 Jul; 81(13):3929-33. PubMed ID: 6588374
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A quantitative analysis for the ADP-ribosylation activity of pertussis toxin: an enzymatic-HPLC coupled assay applicable to formulated whole cell and acellular pertussis vaccine products.
    Cyr T; Menzies AJ; Calver J; Whitehouse LW
    Biologicals; 2001 Jun; 29(2):81-95. PubMed ID: 11580213
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The carboxyl terminus of the S1 subunit of pertussis toxin confers high affinity binding to transducin.
    Cortina G; Krueger KM; Barbieri JT
    J Biol Chem; 1991 Dec; 266(35):23810-4. PubMed ID: 1748655
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of histidine 35 of the S1 subunit of pertussis toxin in the ADP-ribosylation of transducin.
    Xu Y; Barbançon-Finck V; Barbieri JT
    J Biol Chem; 1994 Apr; 269(13):9993-9. PubMed ID: 8144593
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pertussis toxin-catalyzed ADP-ribosylation of G(o) alpha with mutations at the carboxyl terminus.
    Avigan J; Murtagh JJ; Stevens LA; Angus CW; Moss J; Vaughan M
    Biochemistry; 1992 Aug; 31(33):7736-40. PubMed ID: 1510959
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mono(ADP-ribosylation) in rat liver mitochondria.
    Frei B; Richter C
    Biochemistry; 1988 Jan; 27(2):529-35. PubMed ID: 2831967
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nucleotide exchange and cGMP phosphodiesterase activation by pertussis toxin inactivated transducin.
    Ramdas L; Disher RM; Wensel TG
    Biochemistry; 1991 Dec; 30(50):11637-45. PubMed ID: 1661143
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pertussis toxin: transition state analysis for ADP-ribosylation of G-protein peptide alphai3C20.
    Scheuring J; Schramm VL
    Biochemistry; 1997 Jul; 36(27):8215-23. PubMed ID: 9204866
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ADP-ribosylation of alpha-Gi proteins by pertussis toxin. Positional dissection of acceptor sites using membrane anchored synthetic peptides.
    von Olleschik-Elbheim L; el Bayâ A; Schmidt MA
    Methods Mol Biol; 2000; 145():203-17. PubMed ID: 10820724
    [No Abstract]   [Full Text] [Related]  

  • 15. Pertussis toxin-catalyzed ADP-ribosylation of GTP-binding proteins with digoxigenin-conjugated NAD. Identification of the proteins in plasma membranes and nuclei.
    Takei Y; Takahashi K; Kanaho Y; Katada T
    FEBS Lett; 1994 Feb; 338(3):264-6. PubMed ID: 8307191
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modification of plasma membrane protein cysteine residues by ADP-ribose in vivo.
    Jacobson MK; Loflin PT; Aboul-Ela N; Mingmuang M; Moss J; Jobson EL
    J Biol Chem; 1990 Jul; 265(19):10825-8. PubMed ID: 2113525
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Utilization of 2'-deoxynad for ADP-ribose transfer reactions.
    Wasson DB; Yamanaka H; Carson DA
    Adv Exp Med Biol; 1989; 253B():213-8. PubMed ID: 2514587
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional modifications of transducin induced by cholera or pertussis-toxin-catalyzed ADP-ribosylation.
    Bornancin F; Franco M; Bigay J; Chabre M
    Eur J Biochem; 1992 Nov; 210(1):33-44. PubMed ID: 1332864
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Localization of a region of the S1 subunit of pertussis toxin required for efficient ADP-ribosyltransferase activity.
    Cortina G; Barbieri JT
    J Biol Chem; 1991 Feb; 266(5):3022-30. PubMed ID: 1993675
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alkylation of cysteine 41, but not cysteine 200, decreases the ADP-ribosyltransferase activity of the S1 subunit of pertussis toxin.
    Kaslow HR; Schlotterbeck JD; Mar VL; Burnette WN
    J Biol Chem; 1989 Apr; 264(11):6386-90. PubMed ID: 2703495
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.