These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Fluoroalcohol - Induced coacervates for selective enrichment and extraction of hydrophobic proteins. Koolivand A; Clayton S; Rion H; Oloumi A; O'Brien A; Khaledi MG J Chromatogr B Analyt Technol Biomed Life Sci; 2018 Apr; 1083():180-188. PubMed ID: 29549741 [TBL] [Abstract][Full Text] [Related]
6. Fatty Acid-Based Coacervates as a Membrane-free Protocell Model. Zhou L; Koh JJ; Wu J; Fan X; Chen H; Hou X; Jiang L; Lu X; Li Z; He C Bioconjug Chem; 2022 Mar; 33(3):444-451. PubMed ID: 35138820 [TBL] [Abstract][Full Text] [Related]
7. Microfluidic Formation of Monodisperse Coacervate Organelles in Liposomes. Deng NN; Huck WTS Angew Chem Int Ed Engl; 2017 Aug; 56(33):9736-9740. PubMed ID: 28658517 [TBL] [Abstract][Full Text] [Related]
8. Interfacing Coacervates with Membranes: From Artificial Organelles and Hybrid Protocells to Intracellular Delivery. Lu T; Javed S; Bonfio C; Spruijt E Small Methods; 2023 Dec; 7(12):e2300294. PubMed ID: 37354057 [TBL] [Abstract][Full Text] [Related]
9. Practical considerations for generation of multi-compartment complex coacervates. Mountain GA; Keating CD Methods Enzymol; 2021; 646():115-142. PubMed ID: 33453923 [TBL] [Abstract][Full Text] [Related]
10. Enzymatic control over coacervation. Nakashima KK; André AAM; Spruijt E Methods Enzymol; 2021; 646():353-389. PubMed ID: 33453932 [TBL] [Abstract][Full Text] [Related]
11. Complex coacervates as artificial membraneless organelles and protocells. Deng NN Biomicrofluidics; 2020 Sep; 14(5):051301. PubMed ID: 32922586 [TBL] [Abstract][Full Text] [Related]
12. How Droplets Can Accelerate Reactions─Coacervate Protocells as Catalytic Microcompartments. Smokers IBA; Visser BS; Slootbeek AD; Huck WTS; Spruijt E Acc Chem Res; 2024 Jul; 57(14):1885-1895. PubMed ID: 38968602 [TBL] [Abstract][Full Text] [Related]
13. Dynamic Control of Functional Coacervates in Synthetic Cells. Nair KS; Radhakrishnan S; Bajaj H ACS Synth Biol; 2023 Jul; 12(7):2168-2177. PubMed ID: 37337618 [TBL] [Abstract][Full Text] [Related]
14. RNA-Based Coacervates as a Model for Membraneless Organelles: Formation, Properties, and Interfacial Liposome Assembly. Aumiller WM; Pir Cakmak F; Davis BW; Keating CD Langmuir; 2016 Oct; 32(39):10042-10053. PubMed ID: 27599198 [TBL] [Abstract][Full Text] [Related]
15. Self-programmed enzyme phase separation and multiphase coacervate droplet organization. Karoui H; Seck MJ; Martin N Chem Sci; 2021 Jan; 12(8):2794-2802. PubMed ID: 34164043 [TBL] [Abstract][Full Text] [Related]
16. Coacervate Droplets for Synthetic Cells. Lin Z; Beneyton T; Baret JC; Martin N Small Methods; 2023 Dec; 7(12):e2300496. PubMed ID: 37462244 [TBL] [Abstract][Full Text] [Related]
17. Photoswitchable Molecular Communication between Programmable DNA-Based Artificial Membraneless Organelles. Zhao QH; Cao FH; Luo ZH; Huck WTS; Deng NN Angew Chem Int Ed Engl; 2022 Mar; 61(14):e202117500. PubMed ID: 35090078 [TBL] [Abstract][Full Text] [Related]
18. Composition and structure of whey protein/gum arabic coacervates. Weinbreck F; Tromp RH; de Kruif CG Biomacromolecules; 2004; 5(4):1437-45. PubMed ID: 15244462 [TBL] [Abstract][Full Text] [Related]
19. Complex Coacervate Materials as Artificial Cells. Cook AB; Novosedlik S; van Hest JCM Acc Mater Res; 2023 Mar; 4(3):287-298. PubMed ID: 37009061 [TBL] [Abstract][Full Text] [Related]
20. Multiphasic Coacervates Assembled by Hydrogen Bonding and Hydrophobic Interactions. Liu X; Mokarizadeh AH; Narayanan A; Mane P; Pandit A; Tseng YM; Tsige M; Joy A J Am Chem Soc; 2023 Oct; 145(42):23109-23120. PubMed ID: 37820374 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]