These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

355 related articles for article (PubMed ID: 32239914)

  • 21. Enzyme-active liquid coacervate microdroplets as artificial membraneless organelles for intracellular ROS scavenging.
    Chen Y; Yuan M; Zhang Y; Zhou S; Wang K; Wu Z; Liu J
    Biomater Sci; 2022 Aug; 10(16):4588-4595. PubMed ID: 35792669
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A short peptide synthon for liquid-liquid phase separation.
    Abbas M; Lipiński WP; Nakashima KK; Huck WTS; Spruijt E
    Nat Chem; 2021 Nov; 13(11):1046-1054. PubMed ID: 34645986
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structure-Property Relationships Governing Membrane-Penetrating Behaviour of Complex Coacervates.
    Lu T; Hu X; van Haren MHI; Spruijt E; Huck WTS
    Small; 2023 Sep; 19(38):e2303138. PubMed ID: 37218010
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Covalently crosslinked coacervates: immobilization and stabilization of proteins with enhanced enzymatic activity.
    Zhao M; Cho SH; Wu X; Mao J; Vogt BD; Zacharia NS
    Soft Matter; 2024 Oct; 20(38):7623-7633. PubMed ID: 39291470
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of Polypeptide Complex Coacervate Microenvironment on Protonation of a Guest Molecule.
    Choi S; Knoerdel AR; Sing CE; Keating CD
    J Phys Chem B; 2023 Jul; 127(26):5978-5991. PubMed ID: 37350455
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Peptide-based coacervates in therapeutic applications.
    Ma L; Fang X; Wang C
    Front Bioeng Biotechnol; 2022; 10():1100365. PubMed ID: 36686257
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Protocells Featuring Membrane-Bound and Dynamic Membraneless Organelles.
    Schvartzman C; Ibarboure E; Martin A; Garanger E; Mutschler A; Lecommandoux S
    Biomacromolecules; 2024 Jul; 25(7):4087-4094. PubMed ID: 38828905
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Elastin-like polypeptide coacervates as reversibly triggerable compartments for synthetic cells.
    Chen C; Ganar KA; de Haas RJ; Jarnot N; Hogeveen E; de Vries R; Deshpande S
    Commun Chem; 2024 Sep; 7(1):198. PubMed ID: 39232074
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Steering Coacervation by a Pair of Broad-Spectrum Regulators.
    Yang S; Li B; Wu C; Xu W; Tu M; Yan Y; Huang J; Drechsler M; Granick S; Jiang L
    ACS Nano; 2019 Feb; 13(2):2420-2426. PubMed ID: 30703324
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Temperature-Dependent Complex Coacervation of Engineered Elastin-like Polypeptide and Hyaluronic Acid Polyelectrolytes.
    Tang JD; Caliari SR; Lampe KJ
    Biomacromolecules; 2018 Oct; 19(10):3925-3935. PubMed ID: 30185029
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Chip assisted formation of phase-separated liposomes for reconstituting spatial protein-lipid interactions.
    Chien PJ; Shih YL; Cheng CT; Tu HL
    Lab Chip; 2022 Jun; 22(13):2540-2548. PubMed ID: 35667105
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of coacervation conditions on the viscoelastic properties of N,O-carboxymethyl chitosan - gum Arabic coacervates.
    Huang GQ; Du YL; Xiao JX; Wang GY
    Food Chem; 2017 Aug; 228():236-242. PubMed ID: 28317718
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Coacervation of poly-electrolytes in the presence of lipid bilayers: mutual alteration of structure and morphology.
    Mondal S; Cui Q
    Chem Sci; 2022 Jul; 13(26):7933-7946. PubMed ID: 35865903
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Membraneless Compartmentalization Facilitates Enzymatic Cascade Reactions and Reduces Substrate Inhibition.
    Kojima T; Takayama S
    ACS Appl Mater Interfaces; 2018 Sep; 10(38):32782-32791. PubMed ID: 30179001
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Phosphorylation-mediated RNA/peptide complex coacervation as a model for intracellular liquid organelles.
    Aumiller WM; Keating CD
    Nat Chem; 2016 Feb; 8(2):129-37. PubMed ID: 26791895
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Understanding the Impacts of Molecular and Macromolecular Crowding Agents on Protein-Polymer Complex Coacervates.
    Biswas S; Hecht AL; Noble SA; Huang Q; Gillilan RE; Xu AY
    Biomacromolecules; 2023 Nov; 24(11):4771-4782. PubMed ID: 37815312
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Coacervation of Lipid Bilayer in Natural Cell Membranes for Extraction, Fractionation, and Enrichment of Proteins in Proteomics Studies.
    Koolivand A; Azizi M; O'Brien A; Khaledi MG
    J Proteome Res; 2019 Apr; 18(4):1595-1606. PubMed ID: 30810315
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Phospholipid Membrane Formation Templated by Coacervate Droplets.
    Pir Cakmak F; Marianelli AM; Keating CD
    Langmuir; 2021 Aug; 37(34):10366-10375. PubMed ID: 34398617
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Peptide-based coacervates as biomimetic protocells.
    Abbas M; Lipiński WP; Wang J; Spruijt E
    Chem Soc Rev; 2021 Mar; 50(6):3690-3705. PubMed ID: 33616129
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Continuous Transformation from Membrane-Less Coacervates to Membranized Coacervates and Giant Vesicles: Toward Multicompartmental Protocells with Complex (Membrane) Architectures.
    Zhou Y; Zhang K; Moreno S; Temme A; Voit B; Appelhans D
    Angew Chem Int Ed Engl; 2024 Aug; 63(34):e202407472. PubMed ID: 38847278
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.