BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 32240195)

  • 1. Cryopreservation method for spheroids and fabrication of scaffold-free tubular constructs.
    Arai K; Murata D; Takao S; Verissiomo AR; Nakayama K
    PLoS One; 2020; 15(4):e0230428. PubMed ID: 32240195
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication of scaffold-free tubular cardiac constructs using a Bio-3D printer.
    Arai K; Murata D; Verissimo AR; Mukae Y; Itoh M; Nakamura A; Morita S; Nakayama K
    PLoS One; 2018; 13(12):e0209162. PubMed ID: 30557409
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Scaffold-Free Bio-3D Printing Using Spheroids as "Bio-Inks" for Tissue (Re-)Construction and Drug Response Tests.
    Murata D; Arai K; Nakayama K
    Adv Healthc Mater; 2020 Aug; 9(15):e1901831. PubMed ID: 32378363
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermoreversible hydrogel for in situ generation and release of HepG2 spheroids.
    Wang D; Cheng D; Guan Y; Zhang Y
    Biomacromolecules; 2011 Mar; 12(3):578-84. PubMed ID: 21247096
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cryopreservation of fibroblasts immobilized within a porous scaffold: effects of preculture and collagen coating of scaffold on performance of three-dimensional cryopreservation.
    Miyoshi H; Ehashi T; Ohshima N; Jagawa A
    Artif Organs; 2010 Jul; 34(7):609-14. PubMed ID: 20497160
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D printing facilitated scaffold-free tissue unit fabrication.
    Tan Y; Richards DJ; Trusk TC; Visconti RP; Yost MJ; Kindy MS; Drake CJ; Argraves WS; Markwald RR; Mei Y
    Biofabrication; 2014 Jun; 6(2):024111. PubMed ID: 24717646
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Drug response analysis for scaffold-free cardiac constructs fabricated using bio-3D printer.
    Arai K; Murata D; Takao S; Nakamura A; Itoh M; Kitsuka T; Nakayama K
    Sci Rep; 2020 Jun; 10(1):8972. PubMed ID: 32487993
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanotechnology-based Cryopreservation of Cell-Scaffold Constructs: A New Breakthrough to Clinical Application.
    Chen G; Lv Y
    Cryo Letters; 2016; 37(6):381-387. PubMed ID: 28072423
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A rapid biofabrication technique for self-assembled collagen-based multicellular and heterogeneous 3D tissue constructs.
    Shahin-Shamsabadi A; Selvaganapathy PR
    Acta Biomater; 2019 Jul; 92():172-183. PubMed ID: 31085365
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cryopreservation of cell/scaffold tissue-engineered constructs.
    Costa PF; Dias AF; Reis RL; Gomes ME
    Tissue Eng Part C Methods; 2012 Nov; 18(11):852-8. PubMed ID: 22676448
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication of Cardiac Constructs Using Bio-3D Printer.
    Arai K; Murata D; Takao S; Nakayama K
    Methods Mol Biol; 2021; 2320():53-63. PubMed ID: 34302647
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Replacement of Rat Tracheas by Layered, Trachea-Like, Scaffold-Free Structures of Human Cells Using a Bio-3D Printing System.
    Machino R; Matsumoto K; Taniguchi D; Tsuchiya T; Takeoka Y; Taura Y; Moriyama M; Tetsuo T; Oyama S; Takagi K; Miyazaki T; Hatachi G; Doi R; Shimoyama K; Matsuo N; Yamasaki N; Nakayama K; Nagayasu T
    Adv Healthc Mater; 2019 Apr; 8(7):e1800983. PubMed ID: 30632706
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Potential of a cryopreserved cultured dermal substitute composed of hyaluronic acid and collagen to release angiogenic cytokine.
    Sawa M; Kuroyanagi Y
    J Biomater Sci Polym Ed; 2013; 24(2):224-38. PubMed ID: 23565599
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cryopreserved clumps of mesenchymal stem cell/extracellular matrix complexes retain osteogenic capacity and induce bone regeneration.
    Motoike S; Kajiya M; Komatsu N; Takewaki M; Horikoshi S; Matsuda S; Ouhara K; Iwata T; Takeda K; Fujita T; Kurihara H
    Stem Cell Res Ther; 2018 Mar; 9(1):73. PubMed ID: 29562931
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Scaffold-free bioprinting of mesenchymal stem cells using the Regenova printer: Spheroid characterization and osteogenic differentiation.
    Aguilar IN; Olivos DJ; Brinker A; Alvarez MB; Smith LJ; Chu TG; Kacena MA; Wagner DR
    Bioprinting; 2019 Sep; 15():. PubMed ID: 31457109
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D bio-printed scaffold-free nerve constructs with human gingiva-derived mesenchymal stem cells promote rat facial nerve regeneration.
    Zhang Q; Nguyen PD; Shi S; Burrell JC; Cullen DK; Le AD
    Sci Rep; 2018 Apr; 8(1):6634. PubMed ID: 29700345
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Slow cooling cryopreservation of cell-microcarrier constructs.
    Lippens E; Cornelissen M
    Cells Tissues Organs; 2010; 192(3):177-86. PubMed ID: 20407226
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of a vitrification method for preserving human myoblast cell sheets for myocardial regeneration therapy.
    Ohkawara H; Miyagawa S; Fukushima S; Yajima S; Saito A; Nagashima H; Sawa Y
    BMC Biotechnol; 2018 Sep; 18(1):56. PubMed ID: 30200961
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cryopreservation of Tissue-Engineered Scaffold-Based Constructs: from Concept to Reality.
    Arutyunyan I; Elchaninov A; Sukhikh G; Fatkhudinov T
    Stem Cell Rev Rep; 2022 Apr; 18(4):1234-1252. PubMed ID: 34761366
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel cell encapsulatable cryogel (CECG) with macro-porous structures and high permeability: a three-dimensional cell culture scaffold for enhanced cell adhesion and proliferation.
    Fan C; Ling Y; Deng W; Xue J; Sun P; Wang DA
    Biomed Mater; 2019 Jul; 14(5):055006. PubMed ID: 31269472
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.