BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 32240335)

  • 1. Assessment of pharmacokinetic variations of capecitabine after multiple administration in rats: a physiologically based pharmacokinetic model.
    Sakai S; Kobuchi S; Ito Y; Sakaeda T
    Cancer Chemother Pharmacol; 2020 May; 85(5):869-880. PubMed ID: 32240335
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of in vitro metabolic conversion of capecitabine to 5-FU in rats, mice, monkeys and humans--toxicological implications.
    Shindoh H; Nakano K; Yoshida T; Ishigai M
    J Toxicol Sci; 2011 Aug; 36(4):411-22. PubMed ID: 21804305
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pharmacokinetics and pharmacogenetics of capecitabine and its metabolites following replicate administration of two 500 mg tablet formulations.
    Queckenberg C; Erlinghagen V; Baken BC; Van Os SH; Wargenau M; Kubeš V; Peroutka R; Novotný V; Fuhr U
    Cancer Chemother Pharmacol; 2015 Nov; 76(5):1081-91. PubMed ID: 26242222
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation of 5-FU disposition after oral administration of capecitabine, a triple-prodrug of 5-FU, using a physiologically based pharmacokinetic model in a human cancer xenograft model: comparison of the simulated 5-FU exposures in the tumour tissue between human and xenograft model.
    Tsukamoto Y; Kato Y; Ura M; Horii I; Ishikawa T; Ishitsuka H; Sugiyama Y
    Biopharm Drug Dispos; 2001 Jan; 22(1):1-14. PubMed ID: 11745902
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preferential activation of capecitabine in tumor following oral administration to colorectal cancer patients.
    Schüller J; Cassidy J; Dumont E; Roos B; Durston S; Banken L; Utoh M; Mori K; Weidekamm E; Reigner B
    Cancer Chemother Pharmacol; 2000; 45(4):291-7. PubMed ID: 10755317
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Circadian variations in the pharmacokinetics of capecitabine and its metabolites in rats.
    Kobuchi S; Yazaki Y; Ito Y; Sakaeda T
    Eur J Pharm Sci; 2018 Jan; 112():152-158. PubMed ID: 29175408
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Physiologically Based Pharmacokinetic-Pharmacodynamic Model for Capecitabine in Colorectal Cancer Rats: Simulation of Antitumor Efficacy at Various Administration Schedules.
    Sakai S; Kobuchi S; Ito Y; Sakaeda T
    Eur J Drug Metab Pharmacokinet; 2021 Mar; 46(2):301-315. PubMed ID: 33606175
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Clinical pharmacokinetics of capecitabine.
    Reigner B; Blesch K; Weidekamm E
    Clin Pharmacokinet; 2001; 40(2):85-104. PubMed ID: 11286326
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioactivation of capecitabine in human liver: involvement of the cytosolic enzyme on 5'-deoxy-5-fluorocytidine formation.
    Tabata T; Katoh M; Tokudome S; Hosakawa M; Chiba K; Nakajima M; Yokoi T
    Drug Metab Dispos; 2004 Jul; 32(7):762-7. PubMed ID: 15205393
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of Drug-drug Interaction and Optimization in Capecitabine and Irinotecan Combination Regimen using a Physiologically Based Pharmacokinetic Model.
    Sakai S; Kobuchi S; Ito Y; Sakaeda T
    J Pharm Sci; 2022 May; 111(5):1522-1530. PubMed ID: 34965386
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rabeprazole intake does not affect systemic exposure to capecitabine and its metabolites, 5'-deoxy-5-fluorocytidine, 5'-deoxy-5-fluorouridine, and 5-fluorouracil.
    Sekido M; Fujita KI; Kubota Y; Ishida H; Takahashi T; Ohkuma R; Tsunoda T; Ishikawa F; Shibanuma M; Sasaki Y
    Cancer Chemother Pharmacol; 2019 Jun; 83(6):1127-1135. PubMed ID: 30972456
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pharmacokinetic analysis of metronomic capecitabine in refractory metastatic colorectal cancer patients.
    Di Desidero T; Orlandi P; Fioravanti A; Cremolini C; Loupakis F; Marmorino F; Antoniotti C; Masi G; Lonardi S; Bergamo F; Zagonel V; Falcone A; Bocci G
    Invest New Drugs; 2018 Aug; 36(4):709-714. PubMed ID: 29488048
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolism of capecitabine, an oral fluorouracil prodrug: (19)F NMR studies in animal models and human urine.
    Desmoulin F; Gilard V; Malet-Martino M; Martino R
    Drug Metab Dispos; 2002 Nov; 30(11):1221-9. PubMed ID: 12386128
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A physiologically based pharmacokinetic analysis of capecitabine, a triple prodrug of 5-FU, in humans: the mechanism for tumor-selective accumulation of 5-FU.
    Tsukamoto Y; Kato Y; Ura M; Horii I; Ishitsuka H; Kusuhara H; Sugiyama Y
    Pharm Res; 2001 Aug; 18(8):1190-202. PubMed ID: 11587492
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design of a novel oral fluoropyrimidine carbamate, capecitabine, which generates 5-fluorouracil selectively in tumours by enzymes concentrated in human liver and cancer tissue.
    Miwa M; Ura M; Nishida M; Sawada N; Ishikawa T; Mori K; Shimma N; Umeda I; Ishitsuka H
    Eur J Cancer; 1998 Jul; 34(8):1274-81. PubMed ID: 9849491
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diurnal Changes in Capecitabine Clock-Controlled Metabolism Enzymes Are Responsible for Its Pharmacokinetics in Male Mice.
    Akyel YK; Ozturk Civelek D; Ozturk Seyhan N; Gul S; Gazioglu I; Pala Kara Z; Lévi F; Kavakli IH; Okyar A
    J Biol Rhythms; 2023 Apr; 38(2):171-184. PubMed ID: 36762608
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 5-Nitrouracil stabilizes the plasma concentration values of 5-FU in colorectal cancer patients receiving capecitabine.
    Yoshida Y; Hashimoto Y; Miyazaki M; Aisu N; Yamada T; Kajitani R; Munechika T; Matsumoto Y; Nagano H; Shimaoka H; Komono A; Sakamoto R; Yoshimatsu G; Yoshimura F; Kiyomi F; Hasegawa S
    Sci Rep; 2020 Feb; 10(1):2711. PubMed ID: 32066801
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Discovery and development of novel anticancer drug capecitabine].
    Ishitsuka H; Shimma N; Horii I
    Yakugaku Zasshi; 1999 Dec; 119(12):881-97. PubMed ID: 10630095
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design and synthesis of the tumor-activated prodrug of dihydropyrimidine dehydrogenase (DPD) inhibitor, RO0094889 for combination therapy with capecitabine.
    Hattori K; Kohchi Y; Oikawa N; Suda H; Ura M; Ishikawa T; Miwa M; Endoh M; Eda H; Tanimura H; Kawashima A; Horii I; Ishitsuka H; Shimma N
    Bioorg Med Chem Lett; 2003 Mar; 13(5):867-72. PubMed ID: 12617910
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ZRX1, the first EGFR inhibitor-capecitabine based combi-molecule, requires carboxylesterase-mediated hydrolysis for optimal activity.
    Ait-Tihyaty M; Rachid Z; Larroque-Lombard AL; Jean-Claude BJ
    Invest New Drugs; 2013 Dec; 31(6):1409-23. PubMed ID: 23959266
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.