These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 32240895)

  • 1. Iced block method: An efficient method for preparation of micro-sized expanded polystyrene foams.
    Kwak JI; An YJ
    Environ Pollut; 2020 Aug; 263(Pt A):114387. PubMed ID: 32240895
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formation of microplastics by polychaetes (Marphysa sanguinea) inhabiting expanded polystyrene marine debris.
    Jang M; Shim WJ; Han GM; Song YK; Hong SH
    Mar Pollut Bull; 2018 Jun; 131(Pt A):365-369. PubMed ID: 29886959
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Behavior and distribution of polystyrene foams on the shore of Tuul River in Mongolia.
    Battulga B; Kawahigashi M; Oyuntsetseg B
    Environ Pollut; 2020 May; 260():113979. PubMed ID: 32000021
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The release and earthworm bioaccumulation of endogenous hexabromocyclododecanes (HBCDDs) from expanded polystyrene foam microparticles.
    Li B; Lan Z; Wang L; Sun H; Yao Y; Zhang K; Zhu L
    Environ Pollut; 2019 Dec; 255(Pt 1):113163. PubMed ID: 31542672
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Widespread detection of a brominated flame retardant, hexabromocyclododecane, in expanded polystyrene marine debris and microplastics from South Korea and the Asia-Pacific coastal region.
    Jang M; Shim WJ; Han GM; Rani M; Song YK; Hong SH
    Environ Pollut; 2017 Dec; 231(Pt 1):785-794. PubMed ID: 28865384
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expanded polystyrene buoys as an important source of hexabromocyclododecanes for aquatic ecosystem: Evidence from field exposure with different substrates.
    Pan YF; Liu S; Li HX; Lin L; Hou R; Cheng YY; Xu XR
    Environ Pollut; 2023 Feb; 318():120920. PubMed ID: 36565907
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hong Kong at the Pearl River Estuary: A hotspot of microplastic pollution.
    Fok L; Cheung PK
    Mar Pollut Bull; 2015 Oct; 99(1-2):112-8. PubMed ID: 26233305
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Abundance, composition, and distribution of microplastics larger than 20 μm in sand beaches of South Korea.
    Eo S; Hong SH; Song YK; Lee J; Lee J; Shim WJ
    Environ Pollut; 2018 Jul; 238():894-902. PubMed ID: 29631234
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatial distribution of microplastic in the surface waters along the coast of Korea.
    Kwon OY; Kang JH; Hong SH; Shim WJ
    Mar Pollut Bull; 2020 Jun; 155():110729. PubMed ID: 32469750
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microplastic pollution in the surface waters of the Bohai Sea, China.
    Zhang W; Zhang S; Wang J; Wang Y; Mu J; Wang P; Lin X; Ma D
    Environ Pollut; 2017 Dec; 231(Pt 1):541-548. PubMed ID: 28843202
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid Production of Micro- and Nanoplastics by Fragmentation of Expanded Polystyrene Exposed to Sunlight.
    Song YK; Hong SH; Eo S; Han GM; Shim WJ
    Environ Sci Technol; 2020 Sep; 54(18):11191-11200. PubMed ID: 32786551
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Boring crustaceans damage polystyrene floats under docks polluting marine waters with microplastic.
    Davidson TM
    Mar Pollut Bull; 2012 Sep; 64(9):1821-8. PubMed ID: 22763283
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Abundance and characteristics of microplastics in the northern coastal waters of Surabaya, Indonesia.
    Cordova MR; Purwiyanto AIS; Suteja Y
    Mar Pollut Bull; 2019 May; 142():183-188. PubMed ID: 31232293
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of a polystyrene-based microplastic model for bioaccumulation and biodistribution study using radiotracing and nuclear analysis method.
    Munir M; Subechi M; Nurmanjaya A; Prasetya KE; Rindiyantono F; Chairuman ; Pratama C; Yanto ; Pujiyanto A; Setiawan H; Sarwono DA; Sarmini E; Fara ME; Suseno H
    Mar Pollut Bull; 2024 Apr; 201():116283. PubMed ID: 38522338
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Releasing of hexabromocyclododecanes from expanded polystyrenes in seawater -field and laboratory experiments.
    Rani M; Shim WJ; Jang M; Han GM; Hong SH
    Chemosphere; 2017 Oct; 185():798-805. PubMed ID: 28734216
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An optimized density-based approach for extracting microplastics from soil and sediment samples.
    Han X; Lu X; Vogt RD
    Environ Pollut; 2019 Nov; 254(Pt A):113009. PubMed ID: 31419661
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced adsorption of oxytetracycline to weathered microplastic polystyrene: Kinetics, isotherms and influencing factors.
    Zhang H; Wang J; Zhou B; Zhou Y; Dai Z; Zhou Q; Chriestie P; Luo Y
    Environ Pollut; 2018 Dec; 243(Pt B):1550-1557. PubMed ID: 30296753
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Implications of a New Test Facility for Fragmentation Investigations on Virgin (Micro)plastics.
    Born MP; Brüll C; Schüttrumpf H
    Environ Sci Technol; 2023 Jul; 57(28):10393-10403. PubMed ID: 37415331
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Abundance and characteristics of microplastics in beach sediments: Insights into microplastic accumulation in northern Gulf of Mexico estuaries.
    Wessel CC; Lockridge GR; Battiste D; Cebrian J
    Mar Pollut Bull; 2016 Aug; 109(1):178-183. PubMed ID: 27287867
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nano- and microplastics trigger secretion of protein-rich extracellular polymeric substances from phytoplankton.
    Shiu RF; Vazquez CI; Chiang CY; Chiu MH; Chen CS; Ni CW; Gong GC; Quigg A; Santschi PH; Chin WC
    Sci Total Environ; 2020 Dec; 748():141469. PubMed ID: 33113698
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.