These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 32241004)

  • 1. Pennate actuators: force, contraction and stiffness.
    Jenkins T; Bryant M
    Bioinspir Biomim; 2020 May; 15(4):046005. PubMed ID: 32241004
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Variable gearing in a biologically inspired pneumatic actuator array.
    Azizi E; Roberts TJ
    Bioinspir Biomim; 2013 Jun; 8(2):026002. PubMed ID: 23462288
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Architectural gear ratio depends on actuator spacing in a physical model of pennate muscle.
    Sleboda DA; Roberts TJ; Azizi E
    Bioinspir Biomim; 2024 Jan; 19(2):. PubMed ID: 38176106
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bi-directional series-parallel elastic actuator and overlap of the actuation layers.
    Furnémont R; Mathijssen G; Verstraten T; Lefeber D; Vanderborght B
    Bioinspir Biomim; 2016 Jan; 11(1):016005. PubMed ID: 26813145
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design and development of non-magnetic hierarchical actuator powered by shape memory alloy based bipennate muscle.
    Chaurasiya KL; Harsha AS; Sinha Y; Bhattacharya B
    Sci Rep; 2022 Jun; 12(1):10758. PubMed ID: 35750791
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ratchet-integrated pneumatic actuator (RIPA): a large-stroke soft linear actuator inspired by sarcomere muscle contraction.
    Cho HS; Kim TH; Hong TH; Park YL
    Bioinspir Biomim; 2020 Mar; 15(3):036011. PubMed ID: 32069446
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design of a bio-inspired pneumatic artificial muscle with self-contained sensing.
    Erin O; Pol N; Valle L; Yong-Lae Park
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():2115-2119. PubMed ID: 28268749
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Novel Soft Pneumatic Artificial Muscle with High-Contraction Ratio.
    Han K; Kim NH; Shin D
    Soft Robot; 2018 Oct; 5(5):554-566. PubMed ID: 29924698
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An artificial muscle actuator for biomimetic underwater propulsors.
    Yim W; Lee J; Kim KJ
    Bioinspir Biomim; 2007 Jun; 2(2):S31-41. PubMed ID: 17671327
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of bladder wall thickness on miniature pneumatic artificial muscle performance.
    Pillsbury TE; Kothera CS; Wereley NM
    Bioinspir Biomim; 2015 Sep; 10(5):055006. PubMed ID: 26414160
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Variable gearing in pennate muscles.
    Azizi E; Brainerd EL; Roberts TJ
    Proc Natl Acad Sci U S A; 2008 Feb; 105(5):1745-50. PubMed ID: 18230734
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biohybrid tensegrity actuator driven by selective contractions of multiple skeletal muscle tissues.
    Morita K; Morimoto Y; Takeuchi S
    Biofabrication; 2023 Jul; 15(4):. PubMed ID: 37385238
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Design and Mathematical Model of a Novel Variable Stiffness Extensor-Contractor Pneumatic Artificial Muscle.
    Al-Fahaam H; Nefti-Meziani S; Theodoridis T; Davis S
    Soft Robot; 2018 Oct; 5(5):576-591. PubMed ID: 30040059
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bio-hybrid muscle cell-based actuators.
    Ricotti L; Menciassi A
    Biomed Microdevices; 2012 Dec; 14(6):987-98. PubMed ID: 22960907
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling and analysis of a meso-hydraulic climbing robot with artificial muscle actuation.
    Chapman EM; Jenkins TE; Bryant M
    Bioinspir Biomim; 2017 Nov; 12(6):066010. PubMed ID: 28691919
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Empirical modeling of dynamic behaviors of pneumatic artificial muscle actuators.
    Wickramatunge KC; Leephakpreeda T
    ISA Trans; 2013 Nov; 52(6):825-34. PubMed ID: 23871151
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recurrent Braiding of Thin McKibben Muscles to Overcome Their Limitation of Contraction.
    Koizumi S; Kurumaya S; Nabae H; Endo G; Suzumori K
    Soft Robot; 2020 Apr; 7(2):251-258. PubMed ID: 31697196
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nature as an engineer: one simple concept of a bio-inspired functional artificial muscle.
    Schmitt S; Haeufle DF; Blickhan R; Günther M
    Bioinspir Biomim; 2012 Sep; 7(3):036022. PubMed ID: 22728876
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural Determinants of Muscle Gearing During Dynamic Contractions.
    Eng CM; Azizi E; Roberts TJ
    Integr Comp Biol; 2018 Aug; 58(2):207-218. PubMed ID: 29889236
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design and optimization of multi-class series-parallel linear electromagnetic array artificial muscle.
    Li J; Ji Z; Shi X; You F; Fu F; Liu R; Xia J; Wang N; Bai J; Wang Z; Qin X; Dong X
    Biomed Mater Eng; 2014; 24(1):549-55. PubMed ID: 24211938
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.