BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 3224113)

  • 1. [Relation between inter- and intracellular action potentials of frog isolates muscle fiber at various temperatures].
    Gerilovski L; Radicheva N; Gidikov A
    Biofizika; 1988; 33(5):855-9. PubMed ID: 3224113
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dependence between intra- and extracellular action potentials of isolated frog muscle fibres at different temperatures.
    Gerilovsky L; Radicheva N; Gydikov A
    Acta Physiol Pharmacol Bulg; 1988; 14(4):12-9. PubMed ID: 3245457
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intracellular and extracellular action potentials in frog muscle fibre upon blocking the potassium conductivity.
    Radicheva N
    Acta Physiol Pharmacol Bulg; 1986; 12(2):35-9. PubMed ID: 2429496
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extracellular potential field of excited isolated frog muscle fibres immersed in a volume conductor.
    Gydikov A; Gerilovsky L; Radicheva N
    Gen Physiol Biophys; 1986 Apr; 5(2):125-34. PubMed ID: 3792817
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of the blocked inactivation of sodium channels on intracellular and extracellular action potentials from isolated frog muscle fibres.
    Radicheva N
    Acta Physiol Pharmacol Bulg; 1986; 12(3):27-31. PubMed ID: 2433894
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stretch- and stimulation frequency-induced changes in extracellular action potentials of muscle fibres during continuous activity.
    Mileva K; Vydevska M; Radicheva N
    J Muscle Res Cell Motil; 1998 Jan; 19(1):95-103. PubMed ID: 9477381
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of short interstimulus intervals on the intra- and extracellular action potentials of isolated frog muscle fibres.
    Radicheva N; Gerilovsky L; Gydikov A
    Acta Physiol Pharmacol Bulg; 1986; 12(1):26-35. PubMed ID: 3489352
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relations between the shapes of different muscle potentials. Experimental and model investigations.
    Gydikov A; Gerilovski L; Radicheva N; Trayanova N
    Acta Physiol Pharmacol Bulg; 1985; 11(4):33-41. PubMed ID: 3835806
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A method for calculation the extracellular potentials from experimentally recorded intracellular potentials of a single muscle fibers.
    Trayanova N
    Acta Physiol Pharmacol Bulg; 1988; 14(2):83-91. PubMed ID: 3223294
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mathematical modelling of the changes in the parameters of the action potential of frog muscle fibre at different temperatures.
    Stephanova D; Gydikov A
    Electromyogr Clin Neurophysiol; 1985; 25(4):223-32. PubMed ID: 4006854
    [No Abstract]   [Full Text] [Related]  

  • 11. Frog muscle fibre action potential and different extracellular calcium concentration at lowered pH in the medium.
    Radicheva N; Mileva K; Martinov V
    Acta Physiol Pharmacol Bulg; 1998; 23(3-4):107-13. PubMed ID: 10672337
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Neurotrophic control of the mechanism of action potential generation in frog muscle fibers].
    Volkov EM; Poletaev GI
    Fiziol Zh SSSR Im I M Sechenova; 1983 Aug; 69(8):1037-44. PubMed ID: 6628747
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The influence of hypothermia on P2 receptor-mediated responses of frog skeletal muscle.
    Ziganshin AU; Kamaliev RR; Grishin SN; Ziganshina LE; Zefirov AL; Burnstock G
    Eur J Pharmacol; 2005 Feb; 509(2-3):187-93. PubMed ID: 15733555
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extracellular potentials produced by a transition between an inactive and active regions of an excitable fibre.
    Dimitrov GV; Dimitrova NA
    Electromyogr Clin Neurophysiol; 1989; 29(5):265-71. PubMed ID: 2766990
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mathematical analysis of the changes in the intracellular potentials, generated by a human skeletal muscle fibre in the recovery cycle at the different temperatures.
    Stephanova DI
    Electromyogr Clin Neurophysiol; 1984; 24(1-2):107-15. PubMed ID: 6697944
    [No Abstract]   [Full Text] [Related]  

  • 16. Effect of ischaemia on the potentials of human single muscle fibres.
    Gatev P; Dimitrov GV; Gydikov A; Gerilovsky L
    Acta Physiol Pharmacol Bulg; 1981; 7(2):3-12. PubMed ID: 7315389
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mathematical analysis of the changes in the action potential and ionic currents of frog muscle fibres at different temperatures.
    Stephanova DI
    Electromyogr Clin Neurophysiol; 1984; 24(7):599-610. PubMed ID: 6096115
    [No Abstract]   [Full Text] [Related]  

  • 18. Changes in the muscle fibre extracellular action potentials in long-lasting (fatiguing) activity.
    Radicheva N; Gerilovsky L; Gydikov A
    Eur J Appl Physiol Occup Physiol; 1986; 55(5):545-52. PubMed ID: 3769911
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extracellular potential field of an excitable fibre immersed in anisotropic volume conductor.
    Dimitrov GV; Dimitrova NA
    Electromyogr Clin Neurophysiol; 1974; 14(5-6):437-50. PubMed ID: 4457328
    [No Abstract]   [Full Text] [Related]  

  • 20. Influence of the fiber length on the power spectra of single muscle fiber extracellular potentials.
    Dimitrova NA; Dimitrov GV; Lateva ZC
    Electromyogr Clin Neurophysiol; 1991; 31(7):387-98. PubMed ID: 1748076
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.