These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 3224138)

  • 1. Hydrophilic polyphosphazenes as hydrogels: radiation cross-linking and hydrogel characteristics of poly[bis(methoxyethoxyethoxy)phosphazene].
    Allcock HR; Kwon S; Riding GH; Fitzpatrick RJ; Bennett JL
    Biomaterials; 1988 Nov; 9(6):509-13. PubMed ID: 3224138
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Amphiphilic polyphosphazenes as membrane materials: influence of side group on radiation cross-linking.
    Allcock HR; Gebura M; Kwon S; Neenan TX
    Biomaterials; 1988 Nov; 9(6):500-8. PubMed ID: 3224137
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis and characterization of pH-sensitive poly(organophosphazene) hydrogels.
    Allcock HR; Ambrosio AM
    Biomaterials; 1996 Dec; 17(23):2295-302. PubMed ID: 8968526
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activity of urea amidohydrolase immobilized within poly[di(methoxyethoxyethoxy)phosphazene] hydrogels.
    Allcock HR; Pucher SR; Visscher KB
    Biomaterials; 1994 Jun; 15(7):502-6. PubMed ID: 7918902
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tyrosine-bearing polyphosphazenes.
    Allcock HR; Singh A; Ambrosio AM; Laredo WR
    Biomacromolecules; 2003; 4(6):1646-53. PubMed ID: 14606891
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controlled release using a new bioerodible polyphosphazene matrix system.
    Laurencin CT; Koh HJ; Neenan TX; Allcock HR; Langer R
    J Biomed Mater Res; 1987 Oct; 21(10):1231-46. PubMed ID: 3693386
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biocompatible polyphosphazenes by radiation-induced graft copolymerization and heparinization.
    Lora S; Carenza M; Palma G; Pezzin G; Caliceti P; Battaglia P; Lora A
    Biomaterials; 1991 Apr; 12(3):275-80. PubMed ID: 1854895
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation of polyphosphazene hydrogels for enzyme immobilization.
    Qian YC; Chen PC; He GJ; Huang XJ; Xu ZK
    Molecules; 2014 Jul; 19(7):9850-63. PubMed ID: 25006790
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dual cross-linking systems of functionally photo-cross-linkable and thermoresponsive polyphosphazene hydrogels for biomedical applications.
    Potta T; Chun C; Song SC
    Biomacromolecules; 2010 Jul; 11(7):1741-53. PubMed ID: 20536118
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Formation Mechanism of Hydrogels.
    Lu L; Yuan S; Wang J; Shen Y; Deng S; Xie L; Yang Q
    Curr Stem Cell Res Ther; 2018; 13(7):490-496. PubMed ID: 28606044
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Patterning poly(organophosphazenes) for selective cell adhesion applications.
    Barrett EW; Phelps MV; Silva RJ; Gaumond RP; Allcock HR
    Biomacromolecules; 2005; 6(3):1689-97. PubMed ID: 15877395
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Degradation of poly[bis(glycine ethyl ester)phosphazene] in aqueous media.
    Ruiz EM; Ramírez CA; Aponte MA; Barbosa-Cánovas GV
    Biomaterials; 1993 Jun; 14(7):491-6. PubMed ID: 8329520
    [TBL] [Abstract][Full Text] [Related]  

  • 13. pH-responsive amphiphilic hydrogel networks with IPN structure: a strategy for controlled drug release.
    Liu YY; Fan XD; Wei BR; Si QF; Chen WX; Sun L
    Int J Pharm; 2006 Feb; 308(1-2):205-9. PubMed ID: 16321489
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Radiation grafting of hydrophilic monomers onto poly[bis(trifluoroethoxy)phosphazene].
    Lora S; Palma G; Carenza M; Caliceti P; Pezzin G
    Biomaterials; 1994 Sep; 15(11):937-43. PubMed ID: 7833444
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomimetic hydrogels gate transport of calcium ions across cell culture inserts.
    Kotanen CN; Wilson AN; Wilson AM; Ishihara K; Guiseppi-Elie A
    Biomed Microdevices; 2012 Jun; 14(3):549-58. PubMed ID: 22426887
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new textured polyphosphazene biomaterial with improved blood coagulation and microbial infection responses.
    Xu LC; Li Z; Tian Z; Chen C; Allcock HR; Siedlecki CA
    Acta Biomater; 2018 Feb; 67():87-98. PubMed ID: 29229544
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrogels: their future, Part I.
    Graham NB
    Med Device Technol; 1998; 9(1):18-22. PubMed ID: 10176140
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Injectable, dual cross-linkable polyphosphazene blend hydrogels.
    Potta T; Chun C; Song SC
    Biomaterials; 2010 Nov; 31(32):8107-20. PubMed ID: 20692695
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The characteristics of spontaneously forming physically cross-linked hydrogels composed of two water-soluble phospholipid polymers for oral drug delivery carrier I: hydrogel dissolution and insulin release under neutral pH condition.
    Nam K; Watanabe J; Ishihara K
    Eur J Pharm Sci; 2004 Nov; 23(3):261-70. PubMed ID: 15489127
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Miscibility of bioerodible polyphosphazene/poly(lactide-co-glycolide) blends.
    Krogman NR; Singh A; Nair LS; Laurencin CT; Allcock HR
    Biomacromolecules; 2007 Apr; 8(4):1306-12. PubMed ID: 17338563
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.