These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 32241452)

  • 1. In vitro degradability and bioactivity of oxidized bacterial cellulose-hydroxyapatite composites.
    Luz EPCG; Chaves PHS; Vieira LAP; Ribeiro SF; Borges MF; Andrade FK; Muniz CR; Infantes-Molina A; Rodríguez-Castellón E; Rosa MF; Vieira RS
    Carbohydr Polym; 2020 Jun; 237():116174. PubMed ID: 32241452
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Resorbable bacterial cellulose membranes with strontium release for guided bone regeneration.
    Luz EPCG; das Chagas BS; de Almeida NT; de Fátima Borges M; Andrade FK; Muniz CR; Castro-Silva II; Teixeira EH; Popat K; de Freitas Rosa M; Vieira RS
    Mater Sci Eng C Mater Biol Appl; 2020 Nov; 116():111175. PubMed ID: 32806235
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Production of nano bacterial cellulose from beverage industrial waste of citrus peel and pomace using Komagataeibacter xylinus.
    Fan X; Gao Y; He W; Hu H; Tian M; Wang K; Pan S
    Carbohydr Polym; 2016 Oct; 151():1068-1072. PubMed ID: 27474656
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A multipurpose natural and renewable polymer in medical applications: Bacterial cellulose.
    de Oliveira Barud HG; da Silva RR; da Silva Barud H; Tercjak A; Gutierrez J; Lustri WR; de Oliveira OB; Ribeiro SJL
    Carbohydr Polym; 2016 Nov; 153():406-420. PubMed ID: 27561512
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rational design of a high-strength bone scaffold platform based on in situ hybridization of bacterial cellulose/nano-hydroxyapatite framework and silk fibroin reinforcing phase.
    Jiang P; Ran J; Yan P; Zheng L; Shen X; Tong H
    J Biomater Sci Polym Ed; 2018 Feb; 29(2):107-124. PubMed ID: 29140181
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bacterial Cellulose Hybrid Composites with Calcium Phosphate for Bone Tissue Regeneration.
    Busuioc C; Isopencu G; Banciu A; Banciu DD; Oprea O; Mocanu A; Deleanu I; Zăuleţ M; Popescu L; Tănăsuică R; Vasilescu M; Stoica-Guzun A
    Int J Mol Sci; 2022 Dec; 23(24):. PubMed ID: 36555821
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bacterial cellulose membrane functionalized with hydroxiapatite and anti-bone morphogenetic protein 2: A promising material for bone regeneration.
    Coelho F; Cavicchioli M; Specian SS; Scarel-Caminaga RM; Penteado LA; Medeiros AI; Ribeiro SJL; Capote TSO
    PLoS One; 2019; 14(8):e0221286. PubMed ID: 31425530
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bacterial cellulose-hydroxyapatite composites with osteogenic growth peptide (OGP) or pentapeptide OGP on bone regeneration in critical-size calvarial defect model.
    Pigossi SC; de Oliveira GJ; Finoti LS; Nepomuceno R; Spolidorio LC; Rossa C; Ribeiro SJ; Saska S; Scarel-Caminaga RM
    J Biomed Mater Res A; 2015 Oct; 103(10):3397-406. PubMed ID: 25850694
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development and properties of bacterial cellulose, curcumin, and chitosan composite biodegradable films for active packaging materials.
    Xu Y; Liu X; Jiang Q; Yu D; Xu Y; Wang B; Xia W
    Carbohydr Polym; 2021 May; 260():117778. PubMed ID: 33712134
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro and in vivo studies of a novel bacterial cellulose-based acellular bilayer nanocomposite scaffold for the repair of osteochondral defects.
    Kumbhar JV; Jadhav SH; Bodas DS; Barhanpurkar-Naik A; Wani MR; Paknikar KM; Rajwade JM
    Int J Nanomedicine; 2017; 12():6437-6459. PubMed ID: 28919746
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Incorporation of microfibrillated cellulose into collagen-hydroxyapatite scaffold for bone tissue engineering.
    He X; Fan X; Feng W; Chen Y; Guo T; Wang F; Liu J; Tang K
    Int J Biol Macromol; 2018 Aug; 115():385-392. PubMed ID: 29673955
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Overview of bacterial cellulose composites: a multipurpose advanced material.
    Shah N; Ul-Islam M; Khattak WA; Park JK
    Carbohydr Polym; 2013 Nov; 98(2):1585-98. PubMed ID: 24053844
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Amino-modified cellulose nanocrystals with adjustable hydrophobicity from combined regioselective oxidation and reductive amination.
    Sirviö JA; Visanko M; Laitinen O; Ämmälä A; Liimatainen H
    Carbohydr Polym; 2016 Jan; 136():581-7. PubMed ID: 26572390
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gelatin-bacterial cellulose composite sponges thermally cross-linked with glucose for tissue engineering applications.
    Kirdponpattara S; Phisalaphong M; Kongruang S
    Carbohydr Polym; 2017 Dec; 177():361-368. PubMed ID: 28962780
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hemostasis-osteogenesis integrated Janus carboxymethyl chitin/hydroxyapatite porous membrane for bone defect repair.
    Lv S; Yuan X; Xiao J; Jiang X
    Carbohydr Polym; 2023 Aug; 313():120888. PubMed ID: 37182974
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation and characterization of a bacterial cellulose/silk fibroin sponge scaffold for tissue regeneration.
    Oliveira Barud HG; Barud Hda S; Cavicchioli M; do Amaral TS; de Oliveira Junior OB; Santos DM; Petersen AL; Celes F; Borges VM; de Oliveira CI; de Oliveira PF; Furtado RA; Tavares DC; Ribeiro SJ
    Carbohydr Polym; 2015 Sep; 128():41-51. PubMed ID: 26005138
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of cellulose from banana pseudo-stem by heterogeneous liquefaction.
    Li W; Zhang Y; Li J; Zhou Y; Li R; Zhou W
    Carbohydr Polym; 2015 Nov; 132():513-9. PubMed ID: 26256377
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparative study on biological properties of novel nanostructured monticellite-based composites with hydroxyapatite bioceramic.
    Kalantari E; Naghib SM
    Mater Sci Eng C Mater Biol Appl; 2019 May; 98():1087-1096. PubMed ID: 30812992
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Immobilization of collagen peptide on dialdehyde bacterial cellulose nanofibers via covalent bonds for tissue engineering and regeneration.
    Wen X; Zheng Y; Wu J; Wang LN; Yuan Z; Peng J; Meng H
    Int J Nanomedicine; 2015; 10():4623-37. PubMed ID: 26229466
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Production of cellulose nanofibers using phenolic enhanced surface oxidation.
    Beheshti Tabar I; Zhang X; Youngblood JP; Mosier NS
    Carbohydr Polym; 2017 Oct; 174():120-127. PubMed ID: 28821045
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.