These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 32241455)
41. The effect of oat β-glucan on in vitro glucose diffusion and glucose transport in rat small intestine. Zhang Y; Zhang H; Wang L; Qian H; Qi X; Ding X; Hu B; Li J J Sci Food Agric; 2016 Jan; 96(2):484-91. PubMed ID: 25639602 [TBL] [Abstract][Full Text] [Related]
42. Impact of different roasting conditions on sensory properties and health-related compounds of oat products. Schlörmann W; Zetzmann S; Wiege B; Haase NU; Greiling A; Lorkowski S; Dawczynski C; Glei M Food Chem; 2020 Mar; 307():125548. PubMed ID: 31654949 [TBL] [Abstract][Full Text] [Related]
43. The use of high-in-β-glucan oat fibre powder as a structuring agent in gluten-free yeast-leavened cake. Karp S; Wyrwisz J; Kurek MA; Wierzbicka A Food Sci Technol Int; 2019 Oct; 25(7):618-629. PubMed ID: 31216185 [TBL] [Abstract][Full Text] [Related]
44. Processing affects the physicochemical properties of beta-glucan in oat bran cereal. Tosh SM; Brummer Y; Miller SS; Regand A; Defelice C; Duss R; Wolever TM; Wood PJ J Agric Food Chem; 2010 Jul; 58(13):7723-30. PubMed ID: 20527967 [TBL] [Abstract][Full Text] [Related]
46. Distinctive activation of β-galactosidase by carboxymethylated β-glucan in vitro and mechanism study: Critical role of hydrophobic and electrostatic interactions. Wang J; Wu W; Yang J; Zhang X; Wu Q; Wang C Food Chem; 2024 Aug; 448():139082. PubMed ID: 38537544 [TBL] [Abstract][Full Text] [Related]
47. The contribution of β-glucan and starch fine structure to texture of oat-fortified wheat noodles. Nguyen TTL; Gilbert RG; Gidley MJ; Fox GP Food Chem; 2020 Sep; 324():126858. PubMed ID: 32353656 [TBL] [Abstract][Full Text] [Related]
48. Non-starch constituents influence the in vitro digestibility of naked oat (Avena nuda L.) starch. Tang M; Wang L; Cheng X; Wu Y; Ouyang J Food Chem; 2019 Nov; 297():124953. PubMed ID: 31253297 [TBL] [Abstract][Full Text] [Related]
49. Beta-glucan from two sources of oat concentrates affect postprandial glycemia in relation to the level of viscosity. Panahi S; Ezatagha A; Temelli F; Vasanthan T; Vuksan V J Am Coll Nutr; 2007 Dec; 26(6):639-44. PubMed ID: 18187427 [TBL] [Abstract][Full Text] [Related]
50. Comparative analysis of the physical properties of o/w emulsions stabilised by cereal β-glucan and other stabilisers. Karp S; Wyrwisz J; Kurek MA Int J Biol Macromol; 2019 Jul; 132():236-243. PubMed ID: 30930267 [TBL] [Abstract][Full Text] [Related]
51. The effect of oat β-glucan on LDL-cholesterol, non-HDL-cholesterol and apoB for CVD risk reduction: a systematic review and meta-analysis of randomised-controlled trials. Ho HV; Sievenpiper JL; Zurbau A; Blanco Mejia S; Jovanovski E; Au-Yeung F; Jenkins AL; Vuksan V Br J Nutr; 2016 Oct; 116(8):1369-1382. PubMed ID: 27724985 [TBL] [Abstract][Full Text] [Related]
52. Beneficial Effects of Oat Beta-Glucan Dietary Supplementation in Colitis Depend on its Molecular Weight. Żyła E; Dziendzikowska K; Gajewska M; Wilczak J; Harasym J; Gromadzka-Ostrowska J Molecules; 2019 Oct; 24(19):. PubMed ID: 31590413 [TBL] [Abstract][Full Text] [Related]
54. Gastrointestinal fate and antioxidation of β-carotene emulsion prepared by oat protein isolate-Pleurotus ostreatus β-glucan conjugate. Zhong L; Ma N; Wu Y; Zhao L; Ma G; Pei F; Hu Q Carbohydr Polym; 2019 Oct; 221():10-20. PubMed ID: 31227148 [TBL] [Abstract][Full Text] [Related]
55. Optimization and characterization of curcumin loaded in octenylsuccinate oat β-glucan micelles with an emphasis on degree of substitution and molecular weight. Liu J; Chen F; Tian W; Ma Y; Li J; Zhao G J Agric Food Chem; 2014 Jul; 62(30):7532-40. PubMed ID: 25005779 [TBL] [Abstract][Full Text] [Related]
56. Identification of high β-glucan oat lines and localization and chemical characterization of their seed kernel β-glucans. Sikora P; Tosh SM; Brummer Y; Olsson O Food Chem; 2013 Apr; 137(1-4):83-91. PubMed ID: 23199994 [TBL] [Abstract][Full Text] [Related]
57. A novel thermostable β-1,3-1,4-glucanase from Thermoascus aurantiacus and its application in oligosaccharide production from oat bran. Yan Q; Yang H; Jiang Z; Liu E; Yang S Carbohydr Res; 2018 Nov; 469():31-37. PubMed ID: 30216845 [TBL] [Abstract][Full Text] [Related]
58. Seeking Aggregation-Induced Emission Materials in Food: Oat β-Glucan and Its Diverse Applications. Xu L; Cao J; Zhong S; Gao Y; Cui X J Agric Food Chem; 2021 Jul; 69(27):7680-7686. PubMed ID: 34196548 [TBL] [Abstract][Full Text] [Related]
59. Exploring changes in aggregation and gel network morphology of soybean protein isolate induced by pH, NaCl, and temperature in view of interactions. Meng A; Luan B; Zhang W; Zheng Y; Guo B; Zhang B Int J Biol Macromol; 2024 Jul; 273(Pt 1):132911. PubMed ID: 38844293 [TBL] [Abstract][Full Text] [Related]
60. Development of an orange juice beverage formulated with oat beta-glucan and whey protein isolate. Wan W; Xu B J Sci Food Agric; 2018 Sep; 98(12):4685-4691. PubMed ID: 29528125 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]