These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 32241455)
61. Interactional effects of β-glucan, starch, and protein in heated oat slurries on viscosity and in vitro bile acid binding. Kim HJ; White PJ J Agric Food Chem; 2012 Jun; 60(24):6217-22. PubMed ID: 22620860 [TBL] [Abstract][Full Text] [Related]
62. The protease activity of transthyretin reverses the effect of pH on the amyloid-β protein/heparan sulfate proteoglycan interaction: a biochromatographic study. Geneste A; Guillaume YC; Magy-Bertrand N; Lethier L; Gharbi T; André C J Pharm Biomed Anal; 2014 Aug; 97():88-96. PubMed ID: 24858299 [TBL] [Abstract][Full Text] [Related]
63. Effects of oat β-glucan on the macrophage cytokine response to herpes simplex virus 1 infection in vitro. Murphy EA; Davis JM; Brown AS; Carmichael MD; Ghaffar A; Mayer EP J Interferon Cytokine Res; 2012 Aug; 32(8):362-7. PubMed ID: 22817337 [TBL] [Abstract][Full Text] [Related]
64. Probing interactions between β-glucan and bile salts at atomic detail by ¹H-¹³C NMR assays. Mikkelsen MS; Cornali SB; Jensen MG; Nilsson M; Beeren SR; Meier S J Agric Food Chem; 2014 Nov; 62(47):11472-8. PubMed ID: 25375023 [TBL] [Abstract][Full Text] [Related]
65. Physical and sensory properties of all-barley and all-oat breads with additional hydroxypropyl methylcellulose (HPMC) β-glucan. Kim Y; Yokoyama WH J Agric Food Chem; 2011 Jan; 59(2):741-6. PubMed ID: 21189014 [TBL] [Abstract][Full Text] [Related]
66. Oat bran, but not its isolated bioactive β-glucans or polyphenols, have a bifidogenic effect in an in vitro fermentation model of the gut microbiota. Kristek A; Wiese M; Heuer P; Kosik O; Schär MY; Soycan G; Alsharif S; Kuhnle GGC; Walton G; Spencer JPE Br J Nutr; 2019 Mar; 121(5):549-559. PubMed ID: 30688188 [TBL] [Abstract][Full Text] [Related]
67. Bile acid-retention by native and modified oat and barley β-glucan. Marasca E; Boulos S; Nyström L Carbohydr Polym; 2020 May; 236():116034. PubMed ID: 32172850 [TBL] [Abstract][Full Text] [Related]
68. Impact of the molecular weight, viscosity, and solubility of β-glucan on in vitro oat starch digestibility. Kim HJ; White PJ J Agric Food Chem; 2013 Apr; 61(13):3270-7. PubMed ID: 23469761 [TBL] [Abstract][Full Text] [Related]
69. In vitro bile acid binding of flours from oat lines varying in percentage and molecular weight distribution of beta-glucan. Sayar S; Jannink JL; White PJ J Agric Food Chem; 2005 Nov; 53(22):8797-803. PubMed ID: 16248587 [TBL] [Abstract][Full Text] [Related]
70. Molecular dynamics simulation of the unfolding of the human prion protein domain under low pH and high temperature conditions. Gu W; Wang T; Zhu J; Shi Y; Liu H Biophys Chem; 2003 May; 104(1):79-94. PubMed ID: 12834829 [TBL] [Abstract][Full Text] [Related]
71. Rheological and microstructural investigation of oat β-glucan isolates varying in molecular weight. Agbenorhevi JK; Kontogiorgos V; Kirby AR; Morris VJ; Tosh SM Int J Biol Macromol; 2011 Oct; 49(3):369-77. PubMed ID: 21640753 [TBL] [Abstract][Full Text] [Related]
72. Attenuation of glycemic responses by oat β-glucan solutions and viscoelastic gels is dependent on molecular weight distribution. Kwong MG; Wolever TM; Brummer Y; Tosh SM Food Funct; 2013 Feb; 4(3):401-8. PubMed ID: 23187607 [TBL] [Abstract][Full Text] [Related]
73. pH dependence of the binding interactions between humic acids and bisphenol A - A thermodynamic perspective. Gan LH; Yan ZR; Ma YF; Zhu YY; Li XY; Xu J; Zhang W Environ Pollut; 2019 Dec; 255(Pt 2):113292. PubMed ID: 31597112 [TBL] [Abstract][Full Text] [Related]
74. Mechanism underlying joint loading and controlled release of β-carotene and curcumin by octenylsuccinated Gastrodia elata starch aggregates. Wu Z; Tang X; Liu S; Li S; Zhao X; Wang Y; Wang X; Li H Food Res Int; 2023 Oct; 172():113136. PubMed ID: 37689900 [TBL] [Abstract][Full Text] [Related]
75. Pro-apoptotic properties of (1,3)(1,4)-β-D-glucan from Avena sativa on human melanoma HTB-140 cells in vitro. Parzonko A; Makarewicz-Wujec M; Jaszewska E; Harasym J; Kozłowska-Wojciechowska M Int J Biol Macromol; 2015 Jan; 72():757-63. PubMed ID: 25285849 [TBL] [Abstract][Full Text] [Related]
76. Physiochemical characterization of β-glucan and in vitro release of lactoferrin from β-glucan microparticles. Kumar H; Wen J; Shaw J; Cornish J; Bunt C Curr Drug Deliv; 2013 Dec; 10(6):713-21. PubMed ID: 23859355 [TBL] [Abstract][Full Text] [Related]
77. pH-controlled nanoaggregation in amphiphilic polymer co-networks. Longo GS; Olvera de la Cruz M; Szleifer I ACS Nano; 2013 Mar; 7(3):2693-704. PubMed ID: 23438375 [TBL] [Abstract][Full Text] [Related]
78. Food gels: gelling process and new applications. Banerjee S; Bhattacharya S Crit Rev Food Sci Nutr; 2012; 52(4):334-46. PubMed ID: 22332597 [TBL] [Abstract][Full Text] [Related]
79. Molecular weight, structure, and shape of oat (1-->3),(1-->4)-beta-D-glucan fractions obtained by enzymatic degradation with lichenase. Roubroeks JP; Mastromauro DI; Andersson R; Christensen BE; Aman P Biomacromolecules; 2000; 1(4):584-91. PubMed ID: 11710185 [TBL] [Abstract][Full Text] [Related]
80. The effect of low or high molecular weight oat beta-glucans on the inflammatory and oxidative stress status in the colon of rats with LPS-induced enteritis. Wilczak J; Błaszczyk K; Kamola D; Gajewska M; Harasym JP; Jałosińska M; Gudej S; Suchecka D; Oczkowski M; Gromadzka-Ostrowska J Food Funct; 2015 Feb; 6(2):590-603. PubMed ID: 25520199 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]