BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 32242071)

  • 1. Single-cell analysis of a mutant library generated using CRISPR-guided deaminase in human melanoma cells.
    Jun S; Lim H; Chun H; Lee JH; Bang D
    Commun Biol; 2020 Apr; 3(1):154. PubMed ID: 32242071
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Large-scale reconstruction of cell lineages using single-cell readout of transcriptomes and CRISPR-Cas9 barcodes by scGESTALT.
    Raj B; Gagnon JA; Schier AF
    Nat Protoc; 2018 Nov; 13(11):2685-2713. PubMed ID: 30353175
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of pathways modulating vemurafenib resistance in melanoma cells via a genome-wide CRISPR/Cas9 screen.
    Goh CJH; Wong JH; El Farran C; Tan BX; Coffill CR; Loh YH; Lane D; Arumugam P
    G3 (Bethesda); 2021 Feb; 11(2):. PubMed ID: 33604667
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Compact CRISPR genetic screens enabled by improved guide RNA library cloning.
    Heo SJ; Enriquez LD; Federman S; Chang AY; Mace R; Shevade K; Nguyen P; Litterman AJ; Shafer S; Przybyla L; Chow ED
    Genome Biol; 2024 Jan; 25(1):25. PubMed ID: 38243310
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiplexed detection of proteins, transcriptomes, clonotypes and CRISPR perturbations in single cells.
    Mimitou EP; Cheng A; Montalbano A; Hao S; Stoeckius M; Legut M; Roush T; Herrera A; Papalexi E; Ouyang Z; Satija R; Sanjana NE; Koralov SB; Smibert P
    Nat Methods; 2019 May; 16(5):409-412. PubMed ID: 31011186
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of an arrayed sgRNA library targeting the human genome.
    Schmidt T; Schmid-Burgk JL; Hornung V
    Sci Rep; 2015 Oct; 5():14987. PubMed ID: 26446710
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional Genomics via CRISPR-Cas.
    Ford K; McDonald D; Mali P
    J Mol Biol; 2019 Jan; 431(1):48-65. PubMed ID: 29959923
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid construction of multiple sgRNA vectors and knockout of the Arabidopsis IAA2 gene using the CRISPR/Cas9 genomic editing technology.
    Liu DY; Qiu T; Ding XH; Li M; Zhu MY; Wang JH
    Yi Chuan; 2016 Aug; 38(8):756-64. PubMed ID: 27531614
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generalizable sgRNA design for improved CRISPR/Cas9 editing efficiency.
    Hiranniramol K; Chen Y; Liu W; Wang X
    Bioinformatics; 2020 May; 36(9):2684-2689. PubMed ID: 31971562
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CASowary: CRISPR-Cas13 guide RNA predictor for transcript depletion.
    Krohannon A; Srivastava M; Rauch S; Srivastava R; Dickinson BC; Janga SC
    BMC Genomics; 2022 Mar; 23(1):172. PubMed ID: 35236300
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CRISPR-offinder: a CRISPR guide RNA design and off-target searching tool for user-defined protospacer adjacent motif.
    Zhao C; Zheng X; Qu W; Li G; Li X; Miao YL; Han X; Liu X; Li Z; Ma Y; Shao Q; Li H; Sun F; Xie S; Zhao S
    Int J Biol Sci; 2017; 13(12):1470-1478. PubMed ID: 29230095
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SeqCor: correct the effect of guide RNA sequences in clustered regularly interspaced short palindromic repeats/Cas9 screening by machine learning algorithm.
    Liu X; Yang Y; Qiu Y; Reyad-Ul-Ferdous M; Ding Q; Wang Y
    J Genet Genomics; 2020 Nov; 47(11):672-680. PubMed ID: 33451939
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Refined sgRNA efficacy prediction improves large- and small-scale CRISPR-Cas9 applications.
    Labuhn M; Adams FF; Ng M; Knoess S; Schambach A; Charpentier EM; Schwarzer A; Mateo JL; Klusmann JH; Heckl D
    Nucleic Acids Res; 2018 Feb; 46(3):1375-1385. PubMed ID: 29267886
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct-seq: programmed gRNA scaffold for streamlined scRNA-seq in CRISPR screen.
    Song Q; Ni K; Liu M; Li Y; Wang L; Wang Y; Liu Y; Yu Z; Qi Y; Lu Z; Ma L
    Genome Biol; 2020 Jun; 21(1):136. PubMed ID: 32513233
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DeepCRISPR: optimized CRISPR guide RNA design by deep learning.
    Chuai G; Ma H; Yan J; Chen M; Hong N; Xue D; Zhou C; Zhu C; Chen K; Duan B; Gu F; Qu S; Huang D; Wei J; Liu Q
    Genome Biol; 2018 Jun; 19(1):80. PubMed ID: 29945655
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pooled CRISPR screening with single-cell transcriptome readout.
    Datlinger P; Rendeiro AF; Schmidl C; Krausgruber T; Traxler P; Klughammer J; Schuster LC; Kuchler A; Alpar D; Bock C
    Nat Methods; 2017 Mar; 14(3):297-301. PubMed ID: 28099430
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Doxycycline-Dependent Self-Inactivation of CRISPR-Cas9 to Temporally Regulate On- and Off-Target Editing.
    Kelkar A; Zhu Y; Groth T; Stolfa G; Stablewski AB; Singhi N; Nemeth M; Neelamegham S
    Mol Ther; 2020 Jan; 28(1):29-41. PubMed ID: 31601489
    [TBL] [Abstract][Full Text] [Related]  

  • 18. OffScan: a universal and fast CRISPR off-target sites detection tool.
    Cui Y; Liao X; Peng S; Tang T; Huang C; Yang C
    BMC Genomics; 2020 Mar; 21(Suppl 1):872. PubMed ID: 32138651
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Targeted Base Editing with CRISPR-Deaminase in Tomato.
    Shimatani Z; Ariizumi T; Fujikura U; Kondo A; Ezura H; Nishida K
    Methods Mol Biol; 2019; 1917():297-307. PubMed ID: 30610645
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design, execution, and analysis of pooled in vitro CRISPR/Cas9 screens.
    Miles LA; Garippa RJ; Poirier JT
    FEBS J; 2016 Sep; 283(17):3170-80. PubMed ID: 27250066
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.