These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 32242131)

  • 1. Real-time Burn Classification using Ultrasound Imaging.
    Lee S; Rahul ; Ye H; Chittajallu D; Kruger U; Boyko T; Lukan JK; Enquobahrie A; Norfleet J; De S
    Sci Rep; 2020 Apr; 10(1):5829. PubMed ID: 32242131
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A deep learning model for burn depth classification using ultrasound imaging.
    Lee S; Rahul ; Lukan J; Boyko T; Zelenova K; Makled B; Parsey C; Norfleet J; De S
    J Mech Behav Biomed Mater; 2022 Jan; 125():104930. PubMed ID: 34781225
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Raman spectroscopy accurately classifies burn severity in an ex vivo model.
    Ye H; Rahul ; Kruger U; Wang T; Shi S; Norfleet J; De S
    Burns; 2021 Jun; 47(4):812-820. PubMed ID: 32928613
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Classification of burn injury using Raman spectroscopy and optical coherence tomography: An ex-vivo study on porcine skin.
    Rangaraju LP; Kunapuli G; Every D; Ayala OD; Ganapathy P; Mahadevan-Jansen A
    Burns; 2019 May; 45(3):659-670. PubMed ID: 30385061
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Burn wound classification model using spatial frequency-domain imaging and machine learning.
    Rowland R; Ponticorvo A; Baldado M; Kennedy GT; Burmeister DM; Christy RJ; Bernal NP; Durkin AJ
    J Biomed Opt; 2019 May; 24(5):1-9. PubMed ID: 31134769
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Non-invasive optical imaging techniques for burn-injured tissue detection for debridement surgery.
    Heredia-Juesas J; Thatcher JE; Yang Lu ; Squiers JJ; King D; Wensheng Fan ; DiMaio JM; Martinez-Lorenzo JA
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():2893-2896. PubMed ID: 28268919
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Autonomous Multi-modality Burn Wound Characterization using Artificial Intelligence.
    Jacobson MJ; Masry ME; Arrubla DC; Tricas MR; Gnyawali SC; Zhang X; Gordillo G; Xue Y; Sen CK; Wachs J
    Mil Med; 2023 Nov; 188(Suppl 6):674-681. PubMed ID: 37948279
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Forward-looking infrared imaging predicts ultimate burn depth in a porcine vertical injury progression model.
    Miccio J; Parikh S; Marinaro X; Prasad A; McClain S; Singer AJ; Clark RA
    Burns; 2016 Mar; 42(2):397-404. PubMed ID: 26775220
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Full-field burn depth detection based on near-infrared hyperspectral imaging and ensemble regression.
    Wang P; Cao Y; Yin M; Li Y; Lv S; Huang L; Zhang D; Luo Y; Wu J
    Rev Sci Instrum; 2019 Jun; 90(6):064103. PubMed ID: 31255006
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differentiation of fat-poor angiomyolipoma from clear cell renal cell carcinoma in contrast-enhanced MDCT images using quantitative feature classification.
    Lee HS; Hong H; Jung DC; Park S; Kim J
    Med Phys; 2017 Jul; 44(7):3604-3614. PubMed ID: 28376281
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative assessments of burn degree by high-frequency ultrasonic backscattering and statistical model.
    Lin YH; Huang CC; Wang SH
    Phys Med Biol; 2011 Feb; 56(3):757-73. PubMed ID: 21239847
    [TBL] [Abstract][Full Text] [Related]  

  • 12.
    Parvez MA; Yashiro K; Nagahama Y; Tsunoi Y; Saitoh D; Sato S; Nishidate I
    J Biomed Opt; 2024 Feb; 29(2):026003. PubMed ID: 38361505
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Burn characterization using object-oriented hyperspectral image classification.
    Parasca SV; Calin MA
    J Biophotonics; 2022 Nov; 15(11):e202200106. PubMed ID: 35861489
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integration of morphological preprocessing and fractal based feature extraction with recursive feature elimination for skin lesion types classification.
    Chatterjee S; Dey D; Munshi S
    Comput Methods Programs Biomed; 2019 Sep; 178():201-218. PubMed ID: 31416550
    [TBL] [Abstract][Full Text] [Related]  

  • 15. BPBSAM: Body part-specific burn severity assessment model.
    Chauhan J; Goyal P
    Burns; 2020 Sep; 46(6):1407-1423. PubMed ID: 32376068
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Classification of Thyroid Nodules in Ultrasound Images Using Direction-Independent Features Extracted by Two-Threshold Binary Decomposition.
    Prochazka A; Gulati S; Holinka S; Smutek D
    Technol Cancer Res Treat; 2019 Jan; 18():1533033819830748. PubMed ID: 30774015
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative assessment of burn injury in porcine skin with high-frequency ultrasonic imaging.
    Brink JA; Sheets PW; Dines KA; Etchison MR; Hanke CW; Sadove AM
    Invest Radiol; 1986 Aug; 21(8):645-51. PubMed ID: 3528037
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrasound elastography reliably identifies altered mechanical properties of burned soft tissues.
    Ye H; Rahul ; Dargar S; Kruger U; De S
    Burns; 2018 Sep; 44(6):1521-1530. PubMed ID: 29859811
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mammographic masses characterization based on localized texture and dataset fractal analysis using linear, neural and support vector machine classifiers.
    Mavroforakis ME; Georgiou HV; Dimitropoulos N; Cavouras D; Theodoridis S
    Artif Intell Med; 2006 Jun; 37(2):145-62. PubMed ID: 16716579
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Classification of burn injuries using near-infrared spectroscopy.
    Sowa MG; Leonardi L; Payette JR; Cross KM; Gomez M; Fish JS
    J Biomed Opt; 2006; 11(5):054002. PubMed ID: 17092151
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.