These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 32242142)

  • 1. Neuro-Musculoskeletal Mapping for Man-Machine Interfacing.
    Kapelner T; Sartori M; Negro F; Farina D
    Sci Rep; 2020 Apr; 10(1):5834. PubMed ID: 32242142
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting wrist kinematics from motor unit discharge timings for the control of active prostheses.
    Kapelner T; Vujaklija I; Jiang N; Negro F; Aszmann OC; Principe J; Farina D
    J Neuroeng Rehabil; 2019 Apr; 16(1):47. PubMed ID: 30953528
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A musculoskeletal model driven by muscle synergy-derived excitations for hand and wrist movements.
    Zhao J; Yu Y; Wang X; Ma S; Sheng X; Zhu X
    J Neural Eng; 2022 Feb; 19(1):. PubMed ID: 34986472
    [No Abstract]   [Full Text] [Related]  

  • 4. Resolving the effect of wrist position on myoelectric pattern recognition control.
    Adewuyi AA; Hargrove LJ; Kuiken TA
    J Neuroeng Rehabil; 2017 May; 14(1):39. PubMed ID: 28472991
    [TBL] [Abstract][Full Text] [Related]  

  • 5. EMG-based simultaneous and proportional estimation of wrist/hand kinematics in uni-lateral trans-radial amputees.
    Jiang N; Vest-Nielsen JL; Muceli S; Farina D
    J Neuroeng Rehabil; 2012 Jun; 9():42. PubMed ID: 22742707
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lumped-parameter electromyogram-driven musculoskeletal hand model: A potential platform for real-time prosthesis control.
    Crouch DL; Huang H
    J Biomech; 2016 Dec; 49(16):3901-3907. PubMed ID: 27814972
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simultaneous and Proportional Control of Wrist and Hand Movements Based on a Neural-Driven Musculoskeletal Model.
    Li J; Yue S; Pan L
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():3999-4007. PubMed ID: 37815968
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Myoelectric Control Based on a Generic Musculoskeletal Model: Toward a Multi-User Neural-Machine Interface.
    Pan L; Crouch DL; Huang H
    IEEE Trans Neural Syst Rehabil Eng; 2018 Jul; 26(7):1435-1442. PubMed ID: 29985153
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simple EMG-driven musculoskeletal model enables consistent control performance during path tracing tasks.
    Crouch D; He Huang
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():1-4. PubMed ID: 28268266
    [TBL] [Abstract][Full Text] [Related]  

  • 10. IMU-Based Wrist Rotation Control of a Transradial Myoelectric Prosthesis.
    Bennett DA; Goldfarb M
    IEEE Trans Neural Syst Rehabil Eng; 2018 Feb; 26(2):419-427. PubMed ID: 28320673
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparing EMG-Based Human-Machine Interfaces for Estimating Continuous, Coordinated Movements.
    Pan L; Crouch DL; Huang H
    IEEE Trans Neural Syst Rehabil Eng; 2019 Oct; 27(10):2145-2154. PubMed ID: 31478862
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Non-Invasive Analysis of Motor Unit Activation During Simultaneous and Continuous Wrist Movements.
    Chen C; Yu Y; Sheng X; Zhu X
    IEEE J Biomed Health Inform; 2022 May; 26(5):2106-2115. PubMed ID: 34910644
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Musculoskeletal model-based control interface mimics physiologic hand dynamics during path tracing task.
    Crouch DL; Huang HH
    J Neural Eng; 2017 Jun; 14(3):036008. PubMed ID: 28220759
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mapping Individual Motor Unit Activity to Continuous Three-DoF Wrist Torques: Perspectives for Myoelectric Control.
    Chen C; Yu Y; Sheng X; Meng J; Zhu X
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():1807-1815. PubMed ID: 37030732
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Learning regularized representations of categorically labelled surface EMG enables simultaneous and proportional myoelectric control.
    Olsson AE; Malešević N; Björkman A; Antfolk C
    J Neuroeng Rehabil; 2021 Feb; 18(1):35. PubMed ID: 33588868
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Robust simultaneous myoelectric control of multiple degrees of freedom in wrist-hand prostheses by real-time neuromusculoskeletal modeling.
    Sartori M; Durandau G; Došen S; Farina D
    J Neural Eng; 2018 Dec; 15(6):066026. PubMed ID: 30229745
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Continuous and simultaneous estimation of finger kinematics using inputs from an EMG-to-muscle activation model.
    Ngeo JG; Tamei T; Shibata T
    J Neuroeng Rehabil; 2014 Aug; 11():122. PubMed ID: 25123024
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two degrees of freedom quasi-static EMG-force at the wrist using a minimum number of electrodes.
    Clancy EA; Martinez-Luna C; Wartenberg M; Dai C; Farrell TR
    J Electromyogr Kinesiol; 2017 Jun; 34():24-36. PubMed ID: 28384495
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Myoelectric digit action decoding with multi-output, multi-class classification: an offline analysis.
    Krasoulis A; Nazarpour K
    Sci Rep; 2020 Oct; 10(1):16872. PubMed ID: 33037253
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hybrid neuromusculoskeletal modeling to best track joint moments using a balance between muscle excitations derived from electromyograms and optimization.
    Sartori M; Farina D; Lloyd DG
    J Biomech; 2014 Nov; 47(15):3613-21. PubMed ID: 25458151
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.