BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 32242247)

  • 1. Genetic attenuation of alkaloids and nicotine content in tobacco (Nicotiana tabacum).
    Hidalgo Martinez D; Payyavula RS; Kudithipudi C; Shen Y; Xu D; Warek U; Strickland JA; Melis A
    Planta; 2020 Apr; 251(4):92. PubMed ID: 32242247
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular genetics of alkaloid biosynthesis in Nicotiana tabacum.
    Dewey RE; Xie J
    Phytochemistry; 2013 Oct; 94():10-27. PubMed ID: 23953973
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of down-regulating ornithine decarboxylase upon putrescine-associated metabolism and growth in Nicotiana tabacum L.
    Dalton HL; Blomstedt CK; Neale AD; Gleadow R; DeBoer KD; Hamill JD
    J Exp Bot; 2016 May; 67(11):3367-81. PubMed ID: 27126795
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RNAi-mediated down-regulation of ornithine decarboxylase (ODC) leads to reduced nicotine and increased anatabine levels in transgenic Nicotiana tabacum L.
    DeBoer KD; Dalton HL; Edward FJ; Hamill JD
    Phytochemistry; 2011 Apr; 72(4-5):344-55. PubMed ID: 21232776
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Overexpression of arginine decarboxylase in transgenic plants.
    Burtin D; Michael AJ
    Biochem J; 1997 Jul; 325 ( Pt 2)(Pt 2):331-7. PubMed ID: 9230111
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antisense-mediated reduction in ADC activity causes minor alterations in the alkaloid profile of cultured hairy roots and regenerated transgenic plants of Nicotiana tabacum.
    Chintapakorn Y; Hamill JD
    Phytochemistry; 2007 Oct; 68(19):2465-79. PubMed ID: 17612583
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Correlation between polyamines and pyrrolidine alkaloids in developing tobacco callus.
    Tiburcio AF; Kaur-Sawhney R; Ingersoll RB; Galston AW
    Plant Physiol; 1985; 78(2):323-6. PubMed ID: 11540098
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of nicotine pathway downregulation on polyamine biosynthesis and leaf ripening in tobacco.
    Nölke G; Chudobova I; Houdelet M; Volke D; Lusso M; Frederick J; Kudithipudi C; Shen Y; Warek U; Strickland JA; Xu D; Schinkel H; Schillberg S
    Plant Direct; 2021 May; 5(5):e00329. PubMed ID: 34095742
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Arginine decarboxylase as the source of putrescine for tobacco alkaloids.
    Tiburcio AF; Galston AW
    Phytochemistry; 1986; 25(1):107-10. PubMed ID: 11539094
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diurnal changes in polyamine content, arginine and ornithine decarboxylase, and diamine oxidase in tobacco leaves.
    Gemperlová L; Nováková M; Vanková R; Eder J; Cvikrová M
    J Exp Bot; 2006; 57(6):1413-21. PubMed ID: 16556629
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of drought and combined drought and heat stress on polyamine metabolism in proline-over-producing tobacco plants.
    Cvikrová M; Gemperlová L; Martincová O; Vanková R
    Plant Physiol Biochem; 2013 Dec; 73():7-15. PubMed ID: 24029075
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular Evolution and Functional Characterization of a Bifunctional Decarboxylase Involved in Lycopodium Alkaloid Biosynthesis.
    Bunsupa S; Hanada K; Maruyama A; Aoyagi K; Komatsu K; Ueno H; Yamashita M; Sasaki R; Oikawa A; Saito K; Yamazaki M
    Plant Physiol; 2016 Aug; 171(4):2432-44. PubMed ID: 27303024
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Early activation of wheat polyamine biosynthesis during Fusarium head blight implicates putrescine as an inducer of trichothecene mycotoxin production.
    Gardiner DM; Kazan K; Praud S; Torney FJ; Rusu A; Manners JM
    BMC Plant Biol; 2010 Dec; 10():289. PubMed ID: 21192794
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genomic analysis of the polyamine biosynthesis pathway in duckweed Spirodela polyrhiza L.: presence of the arginine decarboxylase pathway, absence of the ornithine decarboxylase pathway, and response to abiotic stresses.
    Upadhyay RK; Shao J; Mattoo AK
    Planta; 2021 Oct; 254(5):108. PubMed ID: 34694486
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential induction by methyl jasmonate of genes encoding ornithine decarboxylase and other enzymes involved in nicotine biosynthesis in tobacco cell cultures.
    Imanishi S; Hashizume K; Nakakita M; Kojima H; Matsubayashi Y; Hashimoto T; Sakagami Y; Yamada Y; Nakamura K
    Plant Mol Biol; 1998 Dec; 38(6):1101-11. PubMed ID: 9869416
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polyamine homeostasis in transgenic plants overexpressing ornithine decarboxylase includes ornithine limitation.
    Mayer MJ; Michael AJ
    J Biochem; 2003 Nov; 134(5):765-72. PubMed ID: 14688243
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Increased Leaf Nicotine Content by Targeting Transcription Factor Gene Expression in Commercial Flue-Cured Tobacco (
    Liu H; Kotova TI; Timko MP
    Genes (Basel); 2019 Nov; 10(11):. PubMed ID: 31739571
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Suppression of pyrrolidine ring biosynthesis and its effects on gene expression and subsequent accumulation of anatabine in leaves of tobacco (N. tabacum L.).
    Kaminski KP; Bovet L; Hilfiker A; Laparra H; Schwaar J; Sierro N; Lang G; De Palo D; Guy PA; Laszlo C; Goepfert S; Ivanov NV
    BMC Genomics; 2023 Sep; 24(1):516. PubMed ID: 37667170
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expression of an antisense Datura stramonium S-adenosylmethionine decarboxylase cDNA in tobacco: changes in enzyme activity, putrescine-spermidine ratio, rhizogenic potential, and response to methyl jasmonate.
    Torrigiani P; Scaramagli S; Ziosi V; Mayer M; Biondi S
    J Plant Physiol; 2005 May; 162(5):559-71. PubMed ID: 15940873
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcriptomic analysis provides insights into the AUXIN RESPONSE FACTOR 6-mediated repression of nicotine biosynthesis in tobacco (Nicotiana tabacum L.).
    Hu M; Zhang H; Wang B; Song Z; Gao Y; Yuan C; Huang C; Zhao L; Zhang Y; Wang L; Zou C; Sui X
    Plant Mol Biol; 2021 Sep; 107(1-2):21-36. PubMed ID: 34302568
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.