These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Performance Analysis and Optimization for Irreversible Combined Carnot Heat Engine Working with Ideal Quantum Gases. Chen L; Meng Z; Ge Y; Wu F Entropy (Basel); 2021 Apr; 23(5):. PubMed ID: 33925622 [TBL] [Abstract][Full Text] [Related]
3. Finite-power performance of quantum heat engines in linear response. Liu Q; He J; Ma Y; Wang J Phys Rev E; 2019 Jul; 100(1-1):012105. PubMed ID: 31499858 [TBL] [Abstract][Full Text] [Related]
4. Efficiency at and near maximum power of low-dissipation heat engines. Holubec V; Ryabov A Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Nov; 92(5):052125. PubMed ID: 26651665 [TBL] [Abstract][Full Text] [Related]
5. Universal efficiency bounds of weak-dissipative thermodynamic cycles at the maximum power output. Guo J; Wang J; Wang Y; Chen J Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):012133. PubMed ID: 23410309 [TBL] [Abstract][Full Text] [Related]
6. Geometric Bound on the Efficiency of Irreversible Thermodynamic Cycles. Frim AG; DeWeese MR Phys Rev Lett; 2022 Jun; 128(23):230601. PubMed ID: 35749204 [TBL] [Abstract][Full Text] [Related]
7. Efficiency at maximum power output of linear irreversible Carnot-like heat engines. Wang Y; Tu ZC Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 1):011127. PubMed ID: 22400532 [TBL] [Abstract][Full Text] [Related]
8. Ecological efficiency of finite-time thermodynamics: A molecular dynamics study. Rojas-Gamboa DA; Rodríguez JI; Gonzalez-Ayala J; Angulo-Brown F Phys Rev E; 2018 Aug; 98(2-1):022130. PubMed ID: 30253568 [TBL] [Abstract][Full Text] [Related]
9. Maximum efficiency of ideal heat engines based on a small system: correction to the Carnot efficiency at the nanoscale. Quan HT Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):062134. PubMed ID: 25019751 [TBL] [Abstract][Full Text] [Related]
10. Optimal low symmetric dissipation Carnot engines and refrigerators. de Tomás C; Hernández AC; Roco JM Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 1):010104. PubMed ID: 22400500 [TBL] [Abstract][Full Text] [Related]
12. Efficiency at Maximum Power of a Carnot Quantum Information Engine. Fadler P; Friedenberger A; Lutz E Phys Rev Lett; 2023 Jun; 130(24):240401. PubMed ID: 37390443 [TBL] [Abstract][Full Text] [Related]
13. Effect of Finite-Size Heat Source's Heat Capacity on the Efficiency of Heat Engine. Ma YH Entropy (Basel); 2020 Sep; 22(9):. PubMed ID: 33286771 [TBL] [Abstract][Full Text] [Related]
14. Efficiency versus speed in quantum heat engines: Rigorous constraint from Lieb-Robinson bound. Shiraishi N; Tajima H Phys Rev E; 2017 Aug; 96(2-1):022138. PubMed ID: 28950461 [TBL] [Abstract][Full Text] [Related]
16. Efficiency at maximum power of low-dissipation Carnot engines. Esposito M; Kawai R; Lindenberg K; Van den Broeck C Phys Rev Lett; 2010 Oct; 105(15):150603. PubMed ID: 21230882 [TBL] [Abstract][Full Text] [Related]
18. Experimental test of power-efficiency trade-off in a finite-time Carnot cycle. Zhai RX; Cui FM; Ma YH; Sun CP; Dong H Phys Rev E; 2023 Apr; 107(4):L042101. PubMed ID: 37198805 [TBL] [Abstract][Full Text] [Related]
19. Efficiency at maximum power output of quantum heat engines under finite-time operation. Wang J; He J; Wu Z Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Mar; 85(3 Pt 1):031145. PubMed ID: 22587076 [TBL] [Abstract][Full Text] [Related]
20. Carnot, Stirling, and Ericsson stochastic heat engines: Efficiency at maximum power. Contreras-Vergara O; Sánchez-Salas N; Valencia-Ortega G; Jiménez-Aquino JI Phys Rev E; 2023 Jul; 108(1-1):014123. PubMed ID: 37583186 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]