These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
316 related articles for article (PubMed ID: 32242825)
1. Re-Enactment as a Method to Reproduce Real-World Fall Events Using Inertial Sensor Data: Development and Usability Study. Sczuka KS; Schwickert L; Becker C; Klenk J J Med Internet Res; 2020 Apr; 22(4):e13961. PubMed ID: 32242825 [TBL] [Abstract][Full Text] [Related]
2. The FARSEEING real-world fall repository: a large-scale collaborative database to collect and share sensor signals from real-world falls. Klenk J; Schwickert L; Palmerini L; Mellone S; Bourke A; Ihlen EA; Kerse N; Hauer K; Pijnappels M; Synofzik M; Srulijes K; Maetzler W; Helbostad JL; Zijlstra W; Aminian K; Todd C; Chiari L; Becker C; Eur Rev Aging Phys Act; 2016; 13():8. PubMed ID: 27807468 [TBL] [Abstract][Full Text] [Related]
3. Reading from the Black Box: What Sensors Tell Us about Resting and Recovery after Real-World Falls. Schwickert L; Klenk J; Zijlstra W; Forst-Gill M; Sczuka K; Helbostad JL; Chiari L; Aminian K; Todd C; Becker C Gerontology; 2018; 64(1):90-95. PubMed ID: 28848150 [TBL] [Abstract][Full Text] [Related]
4. Fall detection algorithms for real-world falls harvested from lumbar sensors in the elderly population: a machine learning approach. Bourke AK; Klenk J; Schwickert L; Aminian K; Ihlen EA; Mellone S; Helbostad JL; Chiari L; Becker C Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():3712-3715. PubMed ID: 28269098 [TBL] [Abstract][Full Text] [Related]
5. Hidden Markov Model-Based Fall Detection With Motion Sensor Orientation Calibration: A Case for Real-Life Home Monitoring. Yu S; Chen H; Brown RA IEEE J Biomed Health Inform; 2018 Nov; 22(6):1847-1853. PubMed ID: 29990227 [TBL] [Abstract][Full Text] [Related]
6. Development of a standard fall data format for signals from body-worn sensors : the FARSEEING consensus. Klenk J; Chiari L; Helbostad JL; Zijlstra W; Aminian K; Todd C; Bandinelli S; Kerse N; Schwickert L; Mellone S; Bagalá F; Delbaere K; Hauer K; Redmond SJ; Robinovitch S; Aziz O; Schwenk M; Zecevic A; Zieschang T; Becker C; Z Gerontol Geriatr; 2013 Dec; 46(8):720-6. PubMed ID: 24271252 [TBL] [Abstract][Full Text] [Related]
7. Temporal and kinematic variables for real-world falls harvested from lumbar sensors in the elderly population. Bourke AK; Klenk J; Schwickert L; Aminian K; Ihlen EA; Helbostad JL; Chiari L; Becker C Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():5183-6. PubMed ID: 26737459 [TBL] [Abstract][Full Text] [Related]
8. Accelerometer-Based Fall Detection Using Machine Learning: Training and Testing on Real-World Falls. Palmerini L; Klenk J; Becker C; Chiari L Sensors (Basel); 2020 Nov; 20(22):. PubMed ID: 33202738 [TBL] [Abstract][Full Text] [Related]
10. Evaluating the Effect of Activity and Environment on Fall Risk in a Paradigm-Depending Laboratory Setting: Protocol for an Experimental Pilot Study. Sczuka KS; Schneider M; Schellenbach M; Kerse N; Becker C; Klenk J JMIR Res Protoc; 2023 May; 12():e46930. PubMed ID: 37163327 [TBL] [Abstract][Full Text] [Related]
11. The identification of vertical velocity profiles using an inertial sensor to investigate pre-impact detection of falls. Bourke AK; O'Donovan KJ; Olaighin G Med Eng Phys; 2008 Sep; 30(7):937-46. PubMed ID: 18243034 [TBL] [Abstract][Full Text] [Related]
12. Comparison of acceleration signals of simulated and real-world backward falls. Klenk J; Becker C; Lieken F; Nicolai S; Maetzler W; Alt W; Zijlstra W; Hausdorff JM; van Lummel RC; Chiari L; Lindemann U Med Eng Phys; 2011 Apr; 33(3):368-73. PubMed ID: 21123104 [TBL] [Abstract][Full Text] [Related]
13. The effect of window size and lead time on pre-impact fall detection accuracy using support vector machine analysis of waist mounted inertial sensor data. Aziz O; Russell CM; Park EJ; Robinovitch SN Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():30-3. PubMed ID: 25569889 [TBL] [Abstract][Full Text] [Related]
14. Identifying balance impairments in people with Parkinson's disease using video and wearable sensors. Stack E; Agarwal V; King R; Burnett M; Tahavori F; Janko B; Harwin W; Ashburn A; Kunkel D Gait Posture; 2018 May; 62():321-326. PubMed ID: 29614464 [TBL] [Abstract][Full Text] [Related]
15. Using Video Technology and AI within Parkinson's Disease Free-Living Fall Risk Assessment. Moore J; Celik Y; Stuart S; McMeekin P; Walker R; Hetherington V; Godfrey A Sensors (Basel); 2024 Jul; 24(15):. PubMed ID: 39123961 [TBL] [Abstract][Full Text] [Related]
16. Exploration and comparison of the pre-impact lead time of active and passive falls based on inertial sensors. Liang D; Ivanov K; Li H; Ning Y; Zhang Q; Wang L; Zhao G Biomed Mater Eng; 2014; 24(1):279-88. PubMed ID: 24211908 [TBL] [Abstract][Full Text] [Related]
17. Fall risk assessment in the wild: A critical examination of wearable sensor use in free-living conditions. Nouredanesh M; Godfrey A; Howcroft J; Lemaire ED; Tung J Gait Posture; 2021 Mar; 85():178-190. PubMed ID: 33601319 [TBL] [Abstract][Full Text] [Related]
18. Development of childhood fall motion database and browser based on behavior measurements. Kakara H; Nishida Y; Yoon SM; Miyazaki Y; Koizumi Y; Mizoguchi H; Yamanaka T Accid Anal Prev; 2013 Oct; 59():432-42. PubMed ID: 23911614 [TBL] [Abstract][Full Text] [Related]
19. A Large-Scale Open Motion Dataset (KFall) and Benchmark Algorithms for Detecting Pre-impact Fall of the Elderly Using Wearable Inertial Sensors. Yu X; Jang J; Xiong S Front Aging Neurosci; 2021; 13():692865. PubMed ID: 34335231 [TBL] [Abstract][Full Text] [Related]
20. Transfer learning approach for fall detection with the FARSEEING real-world dataset and simulated falls. Silva J; Sousa I; Cardoso J Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():3509-3512. PubMed ID: 30441135 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]