These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 32242932)

  • 1. Ictal onset sites and γ-aminobutyric acidergic neuron loss in epileptic pilocarpine-treated rats.
    Wyeth M; Nagendran M; Buckmaster PS
    Epilepsia; 2020 May; 61(5):856-867. PubMed ID: 32242932
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The spiny rat Proechimys guyannensis as model of resistance to epilepsy: chemical characterization of hippocampal cell populations and pilocarpine-induced changes.
    Fabene PF; Correia L; Carvalho RA; Cavalheiro EA; Bentivoglio M
    Neuroscience; 2001; 104(4):979-1002. PubMed ID: 11457585
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Seizure frequency correlates with loss of dentate gyrus GABAergic neurons in a mouse model of temporal lobe epilepsy.
    Buckmaster PS; Abrams E; Wen X
    J Comp Neurol; 2017 Aug; 525(11):2592-2610. PubMed ID: 28425097
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Initial loss but later excess of GABAergic synapses with dentate granule cells in a rat model of temporal lobe epilepsy.
    Thind KK; Yamawaki R; Phanwar I; Zhang G; Wen X; Buckmaster PS
    J Comp Neurol; 2010 Mar; 518(5):647-67. PubMed ID: 20034063
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alterations of hippocampal GAbaergic system contribute to development of spontaneous recurrent seizures in the rat lithium-pilocarpine model of temporal lobe epilepsy.
    André V; Marescaux C; Nehlig A; Fritschy JM
    Hippocampus; 2001; 11(4):452-68. PubMed ID: 11530850
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vulnerability and plasticity of the GABA system in the pilocarpine model of spontaneous recurrent seizures.
    Houser CR; Esclapez M
    Epilepsy Res; 1996 Dec; 26(1):207-18. PubMed ID: 8985701
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Loss of GABAergic neurons in the subiculum and its functional implications in temporal lobe epilepsy.
    Knopp A; Frahm C; Fidzinski P; Witte OW; Behr J
    Brain; 2008 Jun; 131(Pt 6):1516-27. PubMed ID: 18504292
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stereological analysis of forebrain regions in kainate-treated epileptic rats.
    Chen S; Buckmaster PS
    Brain Res; 2005 Sep; 1057(1-2):141-52. PubMed ID: 16122711
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hippocampal granule cell activity and c-Fos expression during spontaneous seizures in awake, chronically epileptic, pilocarpine-treated rats: implications for hippocampal epileptogenesis.
    Harvey BD; Sloviter RS
    J Comp Neurol; 2005 Aug; 488(4):442-63. PubMed ID: 15973680
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neuronal synchrony and the transition to spontaneous seizures.
    Grasse DW; Karunakaran S; Moxon KA
    Exp Neurol; 2013 Oct; 248():72-84. PubMed ID: 23707218
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reduced inhibition of dentate granule cells in a model of temporal lobe epilepsy.
    Kobayashi M; Buckmaster PS
    J Neurosci; 2003 Mar; 23(6):2440-52. PubMed ID: 12657704
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Loss of glutamate decarboxylase mRNA-containing neurons in the rat dentate gyrus following pilocarpine-induced seizures.
    Obenaus A; Esclapez M; Houser CR
    J Neurosci; 1993 Oct; 13(10):4470-85. PubMed ID: 8410199
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neuron loss, granule cell axon reorganization, and functional changes in the dentate gyrus of epileptic kainate-treated rats.
    Buckmaster PS; Dudek FE
    J Comp Neurol; 1997 Sep; 385(3):385-404. PubMed ID: 9300766
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Septal GABAergic neurons are selectively vulnerable to pilocarpine-induced status epilepticus and chronic spontaneous seizures.
    Garrido Sanabria ER; Castañeda MT; Banuelos C; Perez-Cordova MG; Hernandez S; Colom LV
    Neuroscience; 2006 Oct; 142(3):871-83. PubMed ID: 16934946
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Decreased excitatory drive onto hilar neuronal nitric oxide synthase expressing interneurons in chronic models of epilepsy.
    Wang X; Zhang Y; Cheng W; Gao Y; Li S
    Brain Res; 2021 Aug; 1764():147467. PubMed ID: 33831408
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diversity and excitability of deep-layer entorhinal cortical neurons in a model of temporal lobe epilepsy.
    Pilli J; Abbasi S; Richardson M; Kumar SS
    J Neurophysiol; 2012 Sep; 108(6):1724-38. PubMed ID: 22745466
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ictal epileptiform activity in the CA3 region of hippocampal slices produced by pilocarpine.
    Rutecki PA; Yang Y
    J Neurophysiol; 1998 Jun; 79(6):3019-29. PubMed ID: 9636105
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative evaluation of neuronal loss in the dorsal hippocampus in rats with long-term pilocarpine seizures.
    Liu Z; Nagao T; Desjardins GC; Gloor P; Avoli M
    Epilepsy Res; 1994 Mar; 17(3):237-47. PubMed ID: 8013446
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Focal inhibitory interneuron loss and principal cell hyperexcitability in the rat hippocampus after microinjection of a neurotoxic conjugate of saporin and a peptidase-resistant analog of Substance P.
    Martin JL; Sloviter RS
    J Comp Neurol; 2001 Jul; 436(2):127-52. PubMed ID: 11438920
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reduced inhibition and increased output of layer II neurons in the medial entorhinal cortex in a model of temporal lobe epilepsy.
    Kobayashi M; Wen X; Buckmaster PS
    J Neurosci; 2003 Sep; 23(24):8471-9. PubMed ID: 13679415
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.