BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 32243015)

  • 1. Recent Progress in Simple and Cost-Effective Top-Down Lithography for ≈10 nm Scale Nanopatterns: From Edge Lithography to Secondary Sputtering Lithography.
    Jung WB; Jang S; Cho SY; Jeon HJ; Jung HT
    Adv Mater; 2020 Sep; 32(35):e1907101. PubMed ID: 32243015
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Universal Nanopatterning Technique Combining Secondary Sputtering with Nanoscale Electroplating for Fabricating Size-Controllable Ultrahigh-Resolution Nanostructures.
    Song TE; Ahn CW; Jeon HJ
    Langmuir; 2017 Aug; 33(33):8260-8266. PubMed ID: 28756666
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication of 10 nm-scale complex 3D nanopatterns with multiple shapes and components by secondary sputtering phenomenon.
    Jeon HJ; Jeong HS; Kim YH; Jung WB; Kim JY; Jung HT
    ACS Nano; 2014 Feb; 8(2):1204-12. PubMed ID: 24404950
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Complex High-Aspect-Ratio Metal Nanostructures by Secondary Sputtering Combined with Block Copolymer Self-Assembly.
    Jeon HJ; Kim JY; Jung WB; Jeong HS; Kim YH; Shin DO; Jeong SJ; Shin J; Kim SO; Jung HT
    Adv Mater; 2016 Oct; 28(38):8439-8445. PubMed ID: 27488974
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication of complex 3-dimensional patterned structures on a ∼10 nm scale from a single master pattern by secondary sputtering lithography.
    Jeon HJ; Yoo HW; Lee EH; Jang SW; Kim JS; Choi JK; Jung HT
    Nanoscale; 2013 Mar; 5(6):2358-63. PubMed ID: 23392080
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New top-down approach for fabricating high-aspect-ratio complex nanostructures with 10 nm scale features.
    Jeon HJ; Kim KH; Baek YK; Kim DW; Jung HT
    Nano Lett; 2010 Sep; 10(9):3604-10. PubMed ID: 20715809
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single-digit-resolution nanopatterning with extreme ultraviolet light for the 2.5 nm technology node and beyond.
    Mojarad N; Hojeij M; Wang L; Gobrecht J; Ekinci Y
    Nanoscale; 2015 Mar; 7(9):4031-7. PubMed ID: 25653148
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of Silicon Nanobelts and Nanopillars by Soft Lithography for Hydrophobic and Hydrophilic Photonic Surfaces.
    Baquedano E; Martinez RV; Llorens JM; Postigo PA
    Nanomaterials (Basel); 2017 May; 7(5):. PubMed ID: 28492474
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sub-10 nm patterning using EUV interference lithography.
    Päivänranta B; Langner A; Kirk E; David C; Ekinci Y
    Nanotechnology; 2011 Sep; 22(37):375302. PubMed ID: 21852737
    [TBL] [Abstract][Full Text] [Related]  

  • 10. UV-nanoimprint lithography: structure, materials and fabrication of flexible molds.
    Lan H; Liu H
    J Nanosci Nanotechnol; 2013 May; 13(5):3145-72. PubMed ID: 23858828
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Narrow linewidth templates for nanoimprint lithography utilizing conformal deposition.
    Viheriälä J; Rytkönen T; Niemi T; Pessa M
    Nanotechnology; 2008 Jan; 19(1):015302. PubMed ID: 21730528
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanopatterns with biological functions.
    Blättler T; Huwiler C; Ochsner M; Städler B; Solak H; Vörös J; Grandin HM
    J Nanosci Nanotechnol; 2006 Aug; 6(8):2237-64. PubMed ID: 17037832
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-throughput protein nanopatterning.
    Liu X; Kumar M; Calo' A; Albisetti E; Zheng X; Manning KB; Elacqua E; Weck M; Ulijn RV; Riedo E
    Faraday Discuss; 2019 Oct; 219(0):33-43. PubMed ID: 31367716
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plasmonic lithography for the fabrication of surface nanostructures with a feature size down to 9 nm.
    Gao P; Pu M; Ma X; Li X; Guo Y; Wang C; Zhao Z; Luo X
    Nanoscale; 2020 Jan; 12(4):2415-2421. PubMed ID: 31750491
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel Self-shrinking Mask for Sub-3 nm Pattern Fabrication.
    Yang PS; Cheng PH; Kao CR; Chen MJ
    Sci Rep; 2016 Jul; 6():29625. PubMed ID: 27404325
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanoimprinting for high-throughput replication of geometrically precise pillars in fused silica to regulate cell behavior.
    Ganjian M; Modaresifar K; Rompolas D; Fratila-Apachitei LE; Zadpoor AA
    Acta Biomater; 2022 Mar; 140():717-729. PubMed ID: 34875357
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Patterning via optical saturable transitions--fabrication and characterization.
    Cantu P; Andrew TL; Menon R
    J Vis Exp; 2014 Dec; (94):. PubMed ID: 25548880
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sub-10 nm Resolution Patterning of Pockets for Enzyme Immobilization with Independent Density and Quasi-3D Topography Control.
    Liu X; Kumar M; Calo A; Albisetti E; Zheng X; Manning KB; Elacqua E; Weck M; Ulijn RV; Riedo E
    ACS Appl Mater Interfaces; 2019 Nov; 11(44):41780-41790. PubMed ID: 31609566
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication of sub-20 nm nano-gap structures through the elastomeric nano-stamp assisted secondary sputtering phenomenon.
    Jeon HJ; Lee EH; Yoo HW; Kim KH; Jung HT
    Nanoscale; 2014 Jun; 6(11):5953-9. PubMed ID: 24770563
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Broadband interference lithography at extreme ultraviolet and soft x-ray wavelengths.
    Mojarad N; Fan D; Gobrecht J; Ekinci Y
    Opt Lett; 2014 Apr; 39(8):2286-9. PubMed ID: 24978974
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.