BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 32243497)

  • 21. Vesicular release statistics and unitary postsynaptic current at single GABAergic synapses.
    Pulido C; Trigo FF; Llano I; Marty A
    Neuron; 2015 Jan; 85(1):159-172. PubMed ID: 25543456
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Quantal analysis estimates docking site occupancy determining short-term depression at hippocampal glutamatergic synapses.
    Tanaka M; Sakaba T; Miki T
    J Physiol; 2021 Dec; 599(23):5301-5327. PubMed ID: 34705277
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cholinergic modulation of multivesicular release regulates striatal synaptic potency and integration.
    Higley MJ; Soler-Llavina GJ; Sabatini BL
    Nat Neurosci; 2009 Sep; 12(9):1121-8. PubMed ID: 19668198
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Heterogeneous presynaptic release probabilities: functional relevance for short-term plasticity.
    Trommershäuser J; Schneggenburger R; Zippelius A; Neher E
    Biophys J; 2003 Mar; 84(3):1563-79. PubMed ID: 12609861
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The mechanism of cAMP-mediated enhancement at a cerebellar synapse.
    Chen C; Regehr WG
    J Neurosci; 1997 Nov; 17(22):8687-94. PubMed ID: 9348337
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Shortened tethering filaments stabilize presynaptic vesicles in support of elevated release probability during LTP in rat hippocampus.
    Jung JH; Kirk LM; Bourne JN; Harris KM
    Proc Natl Acad Sci U S A; 2021 Apr; 118(17):. PubMed ID: 33875591
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Impact of single-site axonal GABAergic synaptic events on cerebellar interneuron activity.
    de San Martin JZ; Jalil A; Trigo FF
    J Gen Physiol; 2015 Dec; 146(6):477-93. PubMed ID: 26621773
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ca(2+) channels and transmitter release at the active zone.
    Schneggenburger R; Han Y; Kochubey O
    Cell Calcium; 2012; 52(3-4):199-207. PubMed ID: 22682961
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Quantal Fluctuations in Central Mammalian Synapses: Functional Role of Vesicular Docking Sites.
    Pulido C; Marty A
    Physiol Rev; 2017 Oct; 97(4):1403-1430. PubMed ID: 28835509
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Vesicular release probability sets the strength of individual Schaffer collateral synapses.
    Dürst CD; Wiegert JS; Schulze C; Helassa N; Török K; Oertner TG
    Nat Commun; 2022 Oct; 13(1):6126. PubMed ID: 36253353
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Variance-mean analysis in the presence of a rapid antagonist indicates vesicle depletion underlies depression at the climbing fiber synapse.
    Foster KA; Regehr WG
    Neuron; 2004 Jul; 43(1):119-31. PubMed ID: 15233922
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Presynaptic regulation of quantal size by the vesicular glutamate transporter VGLUT1.
    Wilson NR; Kang J; Hueske EV; Leung T; Varoqui H; Murnick JG; Erickson JD; Liu G
    J Neurosci; 2005 Jun; 25(26):6221-34. PubMed ID: 15987952
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Anomalous diffusion of synaptic vesicles and its influences on spontaneous and evoked neurotransmission.
    Lamanna J; Gloria G; Villa A; Malgaroli A
    J Physiol; 2024 Jun; 602(12):2873-2898. PubMed ID: 38723211
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Timing of neurotransmission at fast synapses in the mammalian brain.
    Sabatini BL; Regehr WG
    Nature; 1996 Nov; 384(6605):170-2. PubMed ID: 8906792
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Inverse relationship between release probability and readily releasable vesicles in depressing and facilitating synapses.
    Millar AG; Bradacs H; Charlton MP; Atwood HL
    J Neurosci; 2002 Nov; 22(22):9661-7. PubMed ID: 12427821
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Quantitative analysis of calcium-dependent vesicle recruitment and its functional role at the calyx of Held synapse.
    Hosoi N; Sakaba T; Neher E
    J Neurosci; 2007 Dec; 27(52):14286-98. PubMed ID: 18160636
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ca(2+)-permeable AMPA receptors and spontaneous presynaptic transmitter release at developing excitatory spinal synapses.
    Rohrbough J; Spitzer NC
    J Neurosci; 1999 Oct; 19(19):8528-41. PubMed ID: 10493753
    [TBL] [Abstract][Full Text] [Related]  

  • 38. How to maintain active zone integrity during high-frequency transmission.
    Byczkowicz N; Ritzau-Jost A; Delvendahl I; Hallermann S
    Neurosci Res; 2018 Feb; 127():61-69. PubMed ID: 29221908
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Release probability is regulated by the size of the readily releasable vesicle pool at excitatory synapses in hippocampus.
    Dobrunz LE
    Int J Dev Neurosci; 2002; 20(3-5):225-36. PubMed ID: 12175858
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Role of GluA3 AMPA Receptor Subunits in the Presynaptic and Postsynaptic Maturation of Synaptic Transmission and Plasticity of Endbulb-Bushy Cell Synapses in the Cochlear Nucleus.
    Antunes FM; Rubio ME; Kandler K
    J Neurosci; 2020 Mar; 40(12):2471-2484. PubMed ID: 32051325
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.