These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 32243900)

  • 1. Self-reorganization of neuronal activation patterns in the cortex under brain-machine interface and neural operant conditioning.
    Ito H; Fujiki S; Mori Y; Kansaku K
    Neurosci Res; 2020 Jul; 156():279-292. PubMed ID: 32243900
    [TBL] [Abstract][Full Text] [Related]  

  • 2. "Master" neurons induced by operant conditioning in rat motor cortex during a brain-machine interface task.
    Arduin PJ; Frégnac Y; Shulz DE; Ego-Stengel V
    J Neurosci; 2013 May; 33(19):8308-20. PubMed ID: 23658171
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Operant conditioning reveals task-specific responses of single neurons in a brain-machine interface.
    Garcia-Garcia MG; Marquez-Chin C; Popovic MR
    J Neural Eng; 2021 Mar; 18(4):. PubMed ID: 33721847
    [No Abstract]   [Full Text] [Related]  

  • 4. Emergent coordination underlying learning to reach to grasp with a brain-machine interface.
    Vaidya M; Balasubramanian K; Southerland J; Badreldin I; Eleryan A; Shattuck K; Gururangan S; Slutzky M; Osborne L; Fagg A; Oweiss K; Hatsopoulos NG
    J Neurophysiol; 2018 Apr; 119(4):1291-1304. PubMed ID: 29357477
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Operant conditioning of motor cortex neurons reveals neuron-subtype-specific responses in a brain-machine interface task.
    Garcia-Garcia MG; Marquez-Chin C; Popovic MR
    Sci Rep; 2020 Nov; 10(1):19992. PubMed ID: 33203973
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neuron-Type-Specific Utility in a Brain-Machine Interface: a Pilot Study.
    Garcia-Garcia MG; Bergquist AJ; Vargas-Perez H; Nagai MK; Zariffa J; Marquez-Chin C; Popovic MR
    J Spinal Cord Med; 2017 Nov; 40(6):715-722. PubMed ID: 28899231
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bidirectional Modulation of Intrinsic Excitability in Rat Prelimbic Cortex Neuronal Ensembles and Non-Ensembles after Operant Learning.
    Whitaker LR; Warren BL; Venniro M; Harte TC; McPherson KB; Beidel J; Bossert JM; Shaham Y; Bonci A; Hope BT
    J Neurosci; 2017 Sep; 37(36):8845-8856. PubMed ID: 28779019
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reinforcement schedules differentially affect learning in neuronal operant conditioning in rats.
    Song K; Takahashi S; Sakurai Y
    Neurosci Res; 2020 Apr; 153():62-67. PubMed ID: 31002837
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Volitional enhancement of firing synchrony and oscillation by neuronal operant conditioning: interaction with neurorehabilitation and brain-machine interface.
    Sakurai Y; Song K; Tachibana S; Takahashi S
    Front Syst Neurosci; 2014; 8():11. PubMed ID: 24567704
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stimulus-driven changes in sensorimotor behavior and neuronal functional connectivity application to brain-machine interfaces and neurorehabilitation.
    Rebesco JM; Miller LE
    Prog Brain Res; 2011; 192():83-102. PubMed ID: 21763520
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neural constraints on learning.
    Sadtler PT; Quick KM; Golub MD; Chase SM; Ryu SI; Tyler-Kabara EC; Yu BM; Batista AP
    Nature; 2014 Aug; 512(7515):423-6. PubMed ID: 25164754
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Local-learning-based neuron selection for grasping gesture prediction in motor brain machine interfaces.
    Xu K; Wang Y; Wang Y; Wang F; Hao Y; Zhang S; Zhang Q; Chen W; Zheng X
    J Neural Eng; 2013 Apr; 10(2):026008. PubMed ID: 23428877
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Complete Brain-machine Interfaces and Plastic Changes in the Brain].
    Sakurai Y
    Brain Nerve; 2010 Oct; 62(10):1059-65. PubMed ID: 20940505
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Cognition-Related Neural Oscillation Pattern, Generated in the Prelimbic Cortex, Can Control Operant Learning in Rats.
    Hernández-González S; Andreu-Sánchez C; Martín-Pascual MÁ; Gruart A; Delgado-García JM
    J Neurosci; 2017 Jun; 37(24):5923-5935. PubMed ID: 28536269
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inducing γ oscillations and precise spike synchrony by operant conditioning via brain-machine interface.
    Engelhard B; Ozeri N; Israel Z; Bergman H; Vaadia E
    Neuron; 2013 Jan; 77(2):361-75. PubMed ID: 23352171
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Brain-machine interfaces for rehabilitation of poststroke hemiplegia.
    Ushiba J; Soekadar SR
    Prog Brain Res; 2016; 228():163-83. PubMed ID: 27590969
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unsupervised Neural Manifold Alignment for Stable Decoding of Movement from Cortical Signals.
    Ganjali M; Mehridehnavi A; Rakhshani S; Khorasani A
    Int J Neural Syst; 2024 Jan; 34(1):2450006. PubMed ID: 38063378
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A symbiotic brain-machine interface through value-based decision making.
    Mahmoudi B; Sanchez JC
    PLoS One; 2011 Mar; 6(3):e14760. PubMed ID: 21423797
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Decoding Movements from Cortical Ensemble Activity Using a Long Short-Term Memory Recurrent Network.
    Tseng PH; Urpi NA; Lebedev M; Nicolelis M
    Neural Comput; 2019 Jun; 31(6):1085-1113. PubMed ID: 30979355
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Parsing learning in networks using brain-machine interfaces.
    Orsborn AL; Pesaran B
    Curr Opin Neurobiol; 2017 Oct; 46():76-83. PubMed ID: 28843838
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.