These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 32244144)

  • 1. Enhanced trichloroethylene dechlorination by carbon-modified zero-valent iron: Revisiting the role of carbon additives.
    Guan X; Du X; Liu M; Qin H; Qiao J; Sun Y
    J Hazard Mater; 2020 Jul; 394():122564. PubMed ID: 32244144
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electromagnetic Induction of Zerovalent Iron (ZVI) Powder and Nanoscale Zerovalent Iron (NZVI) Particles Enhances Dechlorination of Trichloroethylene in Contaminated Groundwater and Soil: Proof of Concept.
    Phenrat T; Thongboot T; Lowry GV
    Environ Sci Technol; 2016 Jan; 50(2):872-80. PubMed ID: 26654836
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Removal of trichloroethylene by zerovalent iron/activated carbon derived from agricultural wastes.
    Su YF; Cheng YL; Shih YH
    J Environ Manage; 2013 Nov; 129():361-6. PubMed ID: 23994578
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of granular activated carbon/zero valent iron composites for simultaneous adsorption/dechlorination of trichloroethylene.
    Tseng HH; Su JG; Liang C
    J Hazard Mater; 2011 Aug; 192(2):500-6. PubMed ID: 21676545
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanochemically Sulfidated Microscale Zero Valent Iron: Pathways, Kinetics, Mechanism, and Efficiency of Trichloroethylene Dechlorination.
    Gu Y; Wang B; He F; Bradley MJ; Tratnyek PG
    Environ Sci Technol; 2017 Nov; 51(21):12653-12662. PubMed ID: 28984446
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Iron and organo-bentonite for the reduction and sorption of trichloroethylene.
    Cho HH; Lee T; Hwang SJ; Park JW
    Chemosphere; 2005 Jan; 58(1):103-8. PubMed ID: 15522338
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of Copresence of Zerovalent Iron and Sulfate Reducing Bacteria on Reductive Dechlorination of Trichloroethylene.
    Islam S; Redwan A; Millerick K; Filip J; Fan L; Yan W
    Environ Sci Technol; 2021 Apr; 55(8):4851-4861. PubMed ID: 33787255
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reduction of trichloroethylene and nitrate by zero-valent iron with peat.
    Min JE; Kim M; Pardue JH; Park JW
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2008 Feb; 43(2):144-53. PubMed ID: 18172806
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of carboxylic acids on the properties of zerovalent iron toward adsorption and degradation of trichloroethylene.
    Tso CP; Shih YH
    J Environ Manage; 2018 Jan; 206():817-825. PubMed ID: 29197807
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of phosphate and sediment bacteria on trichloroethylene dechlorination with zero valent iron.
    Min JE; Park IS; Ko S; Shin WS; Park JW
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2009 Mar; 44(4):362-9. PubMed ID: 19184703
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of pH on dechlorination of trichloroethylene by zero-valent iron.
    Chen JL; Al-Abed SR; Ryan JA; Li Z
    J Hazard Mater; 2001 May; 83(3):243-54. PubMed ID: 11348735
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sulfidated microscale zero-valent iron/reduced graphene oxide composite (S-mZVI/rGO) for enhanced degradation of trichloroethylene: The role of hydrogen spillover.
    Li T; Teng Y; Li X; Luo S; Xiu Z; Wang H; Sun H
    J Hazard Mater; 2023 Mar; 446():130657. PubMed ID: 36580785
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of ferrous ions on the reductive dechlorination of trichloroethylene by zero-valent iron.
    Liu CC; Tseng DH; Wang CY
    J Hazard Mater; 2006 Aug; 136(3):706-13. PubMed ID: 16504392
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Performance Enhancement of Biogenetic Sulfidated Zero-Valent Iron for Trichloroethylene Degradation: Role of Extracellular Polymeric Substances.
    Wang A; Hou J; Tao C; Miao L; Wu J; Xing B
    Environ Sci Technol; 2023 Feb; 57(8):3323-3333. PubMed ID: 36729963
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acceleration of microiron-based dechlorination in water by contact with fibrous activated carbon.
    Vogel M; Kopinke FD; Mackenzie K
    Sci Total Environ; 2019 Apr; 660():1274-1282. PubMed ID: 30743922
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characteristics of trichloroethene (TCE) dechlorination in seawater over a granulated zero-valent iron.
    Shih YJ; Hsia KF; Chen CW; Chen CF; Dong CD
    Chemosphere; 2019 Feb; 216():40-47. PubMed ID: 30359915
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Zero valent iron and clay mixtures for removal of trichloroethylene, chromium(VI), and nitrate.
    Lee HJ; Chun BS; Kim WC; Chung M; Park JW
    Environ Technol; 2006 Mar; 27(3):299-306. PubMed ID: 16548210
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Removal of Pb(II), Cd(II), Cu(II) and trichloroethylene from water by Nanofer ZVI.
    Eglal MM; Ramamurthy AS
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2015; 50(9):901-12. PubMed ID: 26061203
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanistic role of nitrate anion in TCE dechlorination by ball milled ZVI and sulfidated ZVI: Experimental investigation and theoretical analysis.
    Gong L; Qi J; Lv N; Qiu X; Gu Y; Zhao J; He F
    J Hazard Mater; 2021 Feb; 403():123844. PubMed ID: 33264925
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Degradation of soil-sorbed trichloroethylene by stabilized zero valent iron nanoparticles: effects of sorption, surfactants, and natural organic matter.
    Zhang M; He F; Zhao D; Hao X
    Water Res; 2011 Mar; 45(7):2401-14. PubMed ID: 21376362
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.