BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 32244154)

  • 1. A closer look into the physical interactions between lipid membranes and layered double hydroxide nanoparticles.
    Vasti C; Ambroggio E; Rojas R; Giacomelli CE
    Colloids Surf B Biointerfaces; 2020 Jul; 191():110998. PubMed ID: 32244154
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced colloidal stability and protein resistance of layered double hydroxide nanoparticles with phosphonic acid-terminated PEG coating for drug delivery.
    Cao Z; Adnan NNM; Wang G; Rawal A; Shi B; Liu R; Liang K; Zhao L; Gooding JJ; Boyer C; Gu Z
    J Colloid Interface Sci; 2018 Jul; 521():242-251. PubMed ID: 29574343
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deformation and poration of giant unilamellar vesicles induced by anionic nanoparticles.
    Karal MAS; Ahammed S; Levadny V; Belaya M; Ahamed MK; Ahmed M; Mahbub ZB; Ullah AKMA
    Chem Phys Lipids; 2020 Aug; 230():104916. PubMed ID: 32407734
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Endocytosis-like uptake of surface-modified drug nanocarriers into giant unilamellar vesicles.
    Tahara K; Tadokoro S; Kawashima Y; Hirashima N
    Langmuir; 2012 May; 28(18):7114-8. PubMed ID: 22515197
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of SiO2 nanoparticles on phospholipid membrane integrity and fluidity.
    Wei X; Jiang W; Yu J; Ding L; Hu J; Jiang G
    J Hazard Mater; 2015 Apr; 287():217-24. PubMed ID: 25661168
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Probing Interactions between AuNPs/AgNPs and Giant Unilamellar Vesicles (GUVs) Using Hyperspectral Dark-field Microscopy.
    Bhat A; Huan K; Cooks T; Boukari H; Lu Q
    Int J Mol Sci; 2018 Mar; 19(4):. PubMed ID: 29597298
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluorescein dye intercalated layered double hydroxides for chemically stabilized photoluminescent indicators on inorganic surfaces.
    Lee JH; Jung DY; Kim E; Ahn TK
    Dalton Trans; 2014 Jun; 43(22):8543-8. PubMed ID: 24759944
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Size-dependent effects of layered double hydroxide nanoparticles on cellular functions of mouse embryonic stem cells.
    Wu Y; Zhu R; Ge X; Sun X; Wang Z; Wang W; Wang M; Liu H; Wang S
    Nanomedicine (Lond); 2015; 10(23):3469-82. PubMed ID: 26607261
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemisorption Mechanism of DNA on Mg/Fe Layered Double Hydroxide Nanoparticles: Insights into Engineering Effective SiRNA Delivery Systems.
    Lu M; Shan Z; Andrea K; MacDonald B; Beale S; Curry DE; Wang L; Wang S; Oakes KD; Bennett C; Wu W; Zhang X
    Langmuir; 2016 Mar; 32(11):2659-67. PubMed ID: 26919981
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Subcellular compartment targeting of layered double hydroxide nanoparticles.
    Xu ZP; Niebert M; Porazik K; Walker TL; Cooper HM; Middelberg AP; Gray PP; Bartlett PF; Lu GQ
    J Control Release; 2008 Aug; 130(1):86-94. PubMed ID: 18614254
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of surface chemistry on particle internalization into giant unilamellar vesicles.
    Liu J; Lu N; Li J; Weng Y; Yuan B; Yang K; Ma Y
    Langmuir; 2013 Jun; 29(25):8039-45. PubMed ID: 23738716
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interactions between Layered Double Hydroxide Nanoparticles and Egg Yolk Lecithin Liposome Membranes.
    Liu B; Wang Y; Du N
    Molecules; 2023 May; 28(9):. PubMed ID: 37175337
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Particle size- and number-dependent delivery to cells by layered double hydroxide nanoparticles.
    Dong H; Parekh HS; Xu ZP
    J Colloid Interface Sci; 2015 Jan; 437():10-16. PubMed ID: 25305558
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Curcumin-Loaded Layered Double Hydroxide Nanoparticles-Induced Autophagy for Reducing Glioma Cell Migration and Invasion.
    Zhang H; Zhu Y; Sun X; He X; Wang M; Wang Z; Wang Q; Zhu R; Wang S
    J Biomed Nanotechnol; 2016 Nov; 12(11):2051-62. PubMed ID: 29364622
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of positively charged sites in the interaction between model cell membranes and γ-Fe
    Zhang H; Wei X; Liu L; Zhang Q; Jiang W
    Sci Total Environ; 2019 Jul; 673():414-423. PubMed ID: 30991331
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multifunctional organic-inorganic hybrid nanoparticles and nanosheets based on chitosan derivative and layered double hydroxide: cellular uptake mechanism and application for topical ocular drug delivery.
    Chi H; Gu Y; Xu T; Cao F
    Int J Nanomedicine; 2017; 12():1607-1620. PubMed ID: 28280329
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Facile Way of Modifying Layered Double Hydroxide Nanoparticles with Targeting Ligand-Conjugated Albumin for Enhanced Delivery to Brain Tumour Cells.
    Zuo H; Chen W; Cooper HM; Xu ZP
    ACS Appl Mater Interfaces; 2017 Jun; 9(24):20444-20453. PubMed ID: 28574700
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intracellular drug delivery of layered double hydroxide nanoparticles.
    Oh JM; Park CB; Choy JH
    J Nanosci Nanotechnol; 2011 Feb; 11(2):1632-5. PubMed ID: 21456254
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relevance of protein-protein interactions on the biological identity of nanoparticles.
    Vasti C; Bonnet LV; Galiano MR; Rojas R; Giacomelli CE
    Colloids Surf B Biointerfaces; 2018 Jun; 166():330-338. PubMed ID: 29609156
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystalline phase and surface coating of Al
    Zhu B; Wei X; Song J; Zhang Q; Jiang W
    Chemosphere; 2020 May; 247():125876. PubMed ID: 31978652
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.