These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 3224424)
1. Feeding behavior in mammals: corticobulbar projection is reorganized during conversion from sucking to chewing. Iriki A; Nozaki S; Nakamura Y Brain Res Dev Brain Res; 1988 Dec; 44(2):189-96. PubMed ID: 3224424 [TBL] [Abstract][Full Text] [Related]
2. Role of corticobulbar projection neurons in cortically induced rhythmical masticatory jaw-opening movement in the guinea pig. Nozaki S; Iriki A; Nakamura Y J Neurophysiol; 1986 Apr; 55(4):826-45. PubMed ID: 3517247 [TBL] [Abstract][Full Text] [Related]
3. Generation of rhythmical ingestive activities of the trigeminal, facial, and hypoglossal motoneurons in in vitro CNS preparations isolated from rats and mice. Nakamura Y; Katakura N; Nakajima M J Med Dent Sci; 1999 Jun; 46(2):63-73. PubMed ID: 10805320 [TBL] [Abstract][Full Text] [Related]
4. [Development of chewing center at transition period from sucking to chewing]. Ikuno S Shoni Shikagaku Zasshi; 1989; 27(3):595-606. PubMed ID: 2489872 [TBL] [Abstract][Full Text] [Related]
5. Localization of central rhythm generator involved in cortically induced rhythmical masticatory jaw-opening movement in the guinea pig. Nozaki S; Iriki A; Nakamura Y J Neurophysiol; 1986 Apr; 55(4):806-25. PubMed ID: 3517246 [TBL] [Abstract][Full Text] [Related]
6. Trigeminal premotor neurons in the bulbar parvocellular reticular formation participating in induction of rhythmical activity of trigeminal motoneurons by repetitive stimulation of the cerebral cortex in the guinea pig. Nozaki S; Iriki A; Nakamura Y J Neurophysiol; 1993 Feb; 69(2):595-608. PubMed ID: 8459288 [TBL] [Abstract][Full Text] [Related]
7. Different corticostriatal projections from two parts of the cortical masticatory area in the rabbit. Masuda Y; Kim SK; Kato T; Iida S; Yoshida A; Tachibana Y; Morimoto T Exp Brain Res; 2005 Mar; 161(3):397-404. PubMed ID: 15502983 [TBL] [Abstract][Full Text] [Related]
8. Anatomical organization of descending cortical projections orchestrating the patterns of cortically induced rhythmical jaw muscle activity in guinea pigs. Kato T; Seki S; Higashiyama M; Masuda Y; Kitamura S; Yoshida A Neurosci Res; 2015 Oct; 99():34-45. PubMed ID: 26031605 [TBL] [Abstract][Full Text] [Related]
9. Cortical area inducing chewing-like rhythmical jaw movements and its connections with thalamic nuclei in guinea pigs. Isogai F; Kato T; Fujimoto M; Toi S; Oka A; Adachi T; Maeda Y; Morimoto T; Yoshida A; Masuda Y Neurosci Res; 2012 Dec; 74(3-4):239-47. PubMed ID: 23142519 [TBL] [Abstract][Full Text] [Related]
10. Intracellular analysis of trigeminal motoneuron rhythmical activity during stimulation of pontomedullary reticular formation in anesthetized guinea pig. Gurahian SM; Chandler SH; Goldberg LJ J Neurophysiol; 1989 Dec; 62(6):1225-36. PubMed ID: 2600621 [TBL] [Abstract][Full Text] [Related]
11. Modifications of masticatory behavior after trigeminal deafferentation in the rabbit. Inoue T; Kato T; Masuda Y; Nakamura T; Kawamura Y; Morimoto T Exp Brain Res; 1989; 74(3):579-91. PubMed ID: 2707333 [TBL] [Abstract][Full Text] [Related]
12. Bulbar reticular unit activity during food ingestion in the cat. Nakamura Y; Hiraba K; Enomoto S; Sahara Y Brain Res; 1982 Dec; 253(1-2):312-6. PubMed ID: 7150971 [TBL] [Abstract][Full Text] [Related]
13. Discharge patterns of neurons in the medial pontobulbar reticular formation during fictive mastication in the rabbit. Westberg KG; Scott G; Olsson KA; Lund JP Eur J Neurosci; 2001 Nov; 14(10):1709-18. PubMed ID: 11860465 [TBL] [Abstract][Full Text] [Related]
14. Neural basis for initiation of rhythmic digastric activity upon midbrain stimulation in the guinea pig. Tal M Brain Res; 1987 May; 411(1):58-64. PubMed ID: 3607425 [TBL] [Abstract][Full Text] [Related]
15. The relationship between cortically induced mandibular movements and lateral pterygoid and digastric muscle EMG activity in the anesthetized guinea pig. Lambert RW; Goldberg LJ; Chandler SH Brain Res; 1985 Mar; 329(1-2):7-17. PubMed ID: 3978463 [TBL] [Abstract][Full Text] [Related]
16. A longitudinal electromyographic study of the postnatal maturation of mastication in the rabbit. Langenbach GE; Weijs WA; Brugman P; van Eijden TM Arch Oral Biol; 2001 Sep; 46(9):811-20. PubMed ID: 11420053 [TBL] [Abstract][Full Text] [Related]
17. Stimulation of the chewing area of the cerebral cortex induces inhibitory effects upon swallowing in sheep. Lamkadem M; Zoungrana OR; Amri M; Car A; Roman C Brain Res; 1999 Jun; 832(1-2):97-111. PubMed ID: 10375655 [TBL] [Abstract][Full Text] [Related]
18. Putative feed-forward control of jaw-closing muscle activity during rhythmic jaw movements in the anesthetized rabbit. Komuro A; Morimoto T; Iwata K; Inoue T; Masuda Y; Kato T; Hidaka O J Neurophysiol; 2001 Dec; 86(6):2834-44. PubMed ID: 11731540 [TBL] [Abstract][Full Text] [Related]
19. A role of periodontal sensation in development of rhythmical chewing in dogs. Iinuma M; Yoshida S; Funakoshi M Comp Biochem Physiol Comp Physiol; 1994 Feb; 107(2):389-95. PubMed ID: 7907966 [TBL] [Abstract][Full Text] [Related]
20. The development of mastication in rodents: from neurons to behaviors. Turman JE Arch Oral Biol; 2007 Apr; 52(4):313-6. PubMed ID: 17055446 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]