These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 3224434)

  • 1. Tuberoinfundibular transport of intrahypothalamic-administered dopamine in normo- and hypertensive rats.
    Sim MK
    Clin Exp Hypertens A; 1988; 10(6):1023-30. PubMed ID: 3224434
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Levels of dopamine and 3,4-dihydroxyphenylacetic acid in the adenohypophysis of normo- and hypertensive rats.
    Sim MK; Hsu TP
    Clin Exp Hypertens A; 1990; 12(3):343-53. PubMed ID: 2357838
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential expression of AT1 receptors in the pituitary and adrenal gland of SHR and WKY.
    Jöhren O; Golsch C; Dendorfer A; Qadri F; Häuser W; Dominiak P
    Hypertension; 2003 Apr; 41(4):984-90. PubMed ID: 12642505
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Urinary dopamine and renal handling of L-DOPA in fasted spontaneously hypertensive rats.
    Dantonello TM; Küster E; Mühlbauer B
    Kidney Blood Press Res; 1998; 21(6):438-44. PubMed ID: 9933829
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The actions of dopamine on the blood pressure and heart rate of conscious hypertensive rats: evidence for reduced dopaminergic activity in rats of the Japanese strains.
    Mok JS; Sim MK
    Clin Exp Hypertens A; 1987; 9(10):1615-35. PubMed ID: 3677445
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A defective beta-hydroxylation of dopamine may precede the full development of hypertension in spontaneously hypertensive rats.
    Kuchel O; Racz K; Debinski W; Buu NT
    Can J Cardiol; 1989 Sep; 5(6):327-31. PubMed ID: 2790580
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anterior pituitary proopiomelanocortin expression is decreased in hypertensive rat strains.
    Braas KM; Hendley ED
    Endocrinology; 1994 Jan; 134(1):196-205. PubMed ID: 8275934
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Alterations in catecholamine release in the central nervous system of spontaneously hypertensive rats.
    Tsuda K; Tsuda S; Masuyama Y; Goldstein M
    Jpn Heart J; 1991 Sep; 32(5):701-9. PubMed ID: 1774831
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Altered expression of dopamine D2 receptor mRNA splice variants in brain and pituitary of spontaneously hypertensive rats.
    Autelitano DJ; van den Buuse M
    Neurosci Lett; 1995 Jul; 195(1):1-4. PubMed ID: 7478242
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Release of catecholamines in the locus coeruleus of freely moving and anaesthetized normotensive and spontaneously hypertensive rats: effects of cardiovascular changes and tail pinch.
    Kaehler ST; Sinner C; Philippu A
    Naunyn Schmiedebergs Arch Pharmacol; 2000 Apr; 361(4):433-9. PubMed ID: 10763859
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Brain synaptosomal Ca2+ uptake: comparison of Sprague-Dawley, Wistar-Kyoto and spontaneously hypertensive rats.
    Honda H; Shibuya T; Salafsky B
    Comp Biochem Physiol B; 1990; 95(3):555-8. PubMed ID: 2331879
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proliferation of thyrotropin releasing hormone receptors in specific brain regions during the development of hypertension in spontaneously hypertensive rats.
    Bhargava HN; Das S; Bansinath M
    Peptides; 1987; 8(2):231-5. PubMed ID: 3035513
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Brain catecholamines in spontaneously hypertensive and DOCA-salt hypertensive rats.
    Fujino K
    Acta Med Okayama; 1984 Aug; 38(4):325-40. PubMed ID: 6149670
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Age-related changes in opioid peptide concentrations in brain and pituitary of spontaneously hypertensive rats. Effect of antihypertensive drugs and comparison with deoxycorticosterone acetate and salt hypertension.
    Li SJ; Wong SC; Hong JS; Ingenito AJ
    Pharmacology; 1992; 44(5):245-56. PubMed ID: 1352404
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of galanin on dopamine release in the central nervous system of normotensive and spontaneously hypertensive rats.
    Tsuda K; Tsuda S; Nishio I; Masuyama Y; Goldstein M
    Am J Hypertens; 1998 Dec; 11(12):1475-9. PubMed ID: 9880130
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The activity of catecholamine synthesis in the hypothalamus of female normotensive Wistar Kyoto and spontaneously hypertensive rats.
    Arita J; Hashimoto R; Kimura F
    Brain Res; 1991 Mar; 543(1):157-9. PubMed ID: 1905181
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatial learning/memory and social and nonsocial behaviors in the spontaneously hypertensive, Wistar-Kyoto and Sprague-Dawley rat strains.
    Ferguson SA; Cada AM
    Pharmacol Biochem Behav; 2004 Mar; 77(3):583-94. PubMed ID: 15006470
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Maternal separation affects dopamine transporter function in the spontaneously hypertensive rat: an in vivo electrochemical study.
    Womersley JS; Hsieh JH; Kellaway LA; Gerhardt GA; Russell VA
    Behav Brain Funct; 2011 Dec; 7():49. PubMed ID: 22133315
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Increased oxidative stress in renal proximal tubules of the spontaneously hypertensive rat: a mechanism for defective dopamine D1A receptor/G-protein coupling.
    White BH; Sidhu A
    J Hypertens; 1998 Nov; 16(11):1659-65. PubMed ID: 9856367
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Decrease of central dopamine level in the adult spontaneously hypertensive rats related to the calcium metabolism disorder.
    Sutoo D; Akiyama K; Matsukura T; Nakamoto RK
    Brain Res Bull; 1993; 30(1-2):107-13. PubMed ID: 8420619
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.