These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

553 related articles for article (PubMed ID: 32244398)

  • 1. Tie-2 Cre-Mediated Deficiency of Extracellular Signal-Regulated Kinase 2 Potentiates Experimental Bronchopulmonary Dysplasia-Associated Pulmonary Hypertension in Neonatal Mice.
    Menon RT; Shrestha AK; Barrios R; Reynolds C; Shivanna B
    Int J Mol Sci; 2020 Mar; 21(7):. PubMed ID: 32244398
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extracellular Signal-Regulated Kinase 1 Alone Is Dispensable for Hyperoxia-Mediated Alveolar and Pulmonary Vascular Simplification in Neonatal Mice.
    Menon RT; Thapa S; Shrestha AK; Barrios R; Shivanna B
    Antioxidants (Basel); 2022 Jun; 11(6):. PubMed ID: 35740027
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hyperoxia Disrupts Extracellular Signal-Regulated Kinases 1/2-Induced Angiogenesis in the Developing Lungs.
    Menon RT; Shrestha AK; Barrios R; Shivanna B
    Int J Mol Sci; 2018 May; 19(5):. PubMed ID: 29783779
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hyperoxia-induced S1P
    Sudhadevi T; Jafri A; Ha AW; Basa P; Thomas JM; Fu P; Wary K; Mehta D; Natarajan V; Harijith A
    Cell Biochem Biophys; 2021 Sep; 79(3):561-573. PubMed ID: 34176100
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Endothelial
    Elsaie A; Menon RT; Shrestha AK; Gowda SH; Varghese NP; Barrios RJ; Blanco CL; Konduri GG; Shivanna B
    Antioxidants (Basel); 2021 Nov; 10(12):. PubMed ID: 34943016
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Endothelial to mesenchymal transition during neonatal hyperoxia-induced pulmonary hypertension.
    Gong J; Feng Z; Peterson AL; Carr JF; Vang A; Braza J; Choudhary G; Dennery PA; Yao H
    J Pathol; 2020 Dec; 252(4):411-422. PubMed ID: 32815166
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibition of β-catenin signaling improves alveolarization and reduces pulmonary hypertension in experimental bronchopulmonary dysplasia.
    Alapati D; Rong M; Chen S; Hehre D; Hummler SC; Wu S
    Am J Respir Cell Mol Biol; 2014 Jul; 51(1):104-13. PubMed ID: 24484510
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lung omics signatures in a bronchopulmonary dysplasia and pulmonary hypertension-like murine model.
    Shrestha AK; Gopal VYN; Menon RT; Hagan JL; Huang S; Shivanna B
    Am J Physiol Lung Cell Mol Physiol; 2018 Nov; 315(5):L734-L741. PubMed ID: 30047283
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gene Expression Profiling Identifies Cell Proliferation and Inflammation as the Predominant Pathways Regulated by Aryl Hydrocarbon Receptor in Primary Human Fetal Lung Cells Exposed to Hyperoxia.
    Shivanna B; Maity S; Zhang S; Patel A; Jiang W; Wang L; Welty SE; Belmont J; Coarfa C; Moorthy B
    Toxicol Sci; 2016 Jul; 152(1):155-68. PubMed ID: 27103661
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MicroRNA-30a as a candidate underlying sex-specific differences in neonatal hyperoxic lung injury: implications for BPD.
    Zhang Y; Coarfa C; Dong X; Jiang W; Hayward-Piatkovskyi B; Gleghorn JP; Lingappan K
    Am J Physiol Lung Cell Mol Physiol; 2019 Jan; 316(1):L144-L156. PubMed ID: 30382766
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phenotypic assessment of pulmonary hypertension using high-resolution echocardiography is feasible in neonatal mice with experimental bronchopulmonary dysplasia and pulmonary hypertension: a step toward preventing chronic obstructive pulmonary disease.
    Reynolds CL; Zhang S; Shrestha AK; Barrios R; Shivanna B
    Int J Chron Obstruct Pulmon Dis; 2016; 11():1597-605. PubMed ID: 27478373
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Decreased Liver Kinase B1 Expression and Impaired Angiogenesis in a Murine Model of Bronchopulmonary Dysplasia.
    Rana U; Joshi C; Whitney E; Afolayan A; Dowell J; Teng RJ; Konduri GG
    Am J Respir Cell Mol Biol; 2024 Oct; 71(4):481-494. PubMed ID: 38869353
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Loss of microRNA-30a and sex-specific effects on the neonatal hyperoxic lung injury.
    Grimm SL; Reddick S; Dong X; Leek C; Wang AX; Gutierrez MC; Hartig SM; Moorthy B; Coarfa C; Lingappan K
    Biol Sex Differ; 2023 Aug; 14(1):50. PubMed ID: 37553579
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stromal derived factor-1 mediates the lung regenerative effects of mesenchymal stem cells in a rodent model of bronchopulmonary dysplasia.
    Reiter J; Drummond S; Sammour I; Huang J; Florea V; Dornas P; Hare JM; Rodrigues CO; Young KC
    Respir Res; 2017 Jul; 18(1):137. PubMed ID: 28701189
    [TBL] [Abstract][Full Text] [Related]  

  • 15. S-endoglin expression is induced in hyperoxia and contributes to altered pulmonary angiogenesis in bronchopulmonary dysplasia development.
    Lee Y; Lee J; Nam SK; Hoon Jun Y
    Sci Rep; 2020 Feb; 10(1):3043. PubMed ID: 32080296
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Connective tissue growth factor antibody therapy attenuates hyperoxia-induced lung injury in neonatal rats.
    Alapati D; Rong M; Chen S; Hehre D; Rodriguez MM; Lipson KE; Wu S
    Am J Respir Cell Mol Biol; 2011 Dec; 45(6):1169-77. PubMed ID: 21659659
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impaired Autophagic Activity Contributes to the Pathogenesis of Bronchopulmonary Dysplasia. Evidence from Murine and Baboon Models.
    Zhang L; Soni S; Hekimoglu E; Berkelhamer S; Çataltepe S
    Am J Respir Cell Mol Biol; 2020 Sep; 63(3):338-348. PubMed ID: 32374619
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adrenomedullin Is Necessary to Resolve Hyperoxia-Induced Experimental Bronchopulmonary Dysplasia and Pulmonary Hypertension in Mice.
    Menon RT; Shrestha AK; Reynolds CL; Barrios R; Caron KM; Shivanna B
    Am J Pathol; 2020 Mar; 190(3):711-722. PubMed ID: 32093901
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SM22α cell-specific HIF stabilization mitigates hyperoxia-induced neonatal lung injury.
    Ito R; Barnes EA; Che X; Alvira CM; Cornfield DN
    Am J Physiol Lung Cell Mol Physiol; 2022 Aug; 323(2):L129-L141. PubMed ID: 35762602
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Targeting glycogen synthase kinase-3β to prevent hyperoxia-induced lung injury in neonatal rats.
    Hummler SC; Rong M; Chen S; Hehre D; Alapati D; Wu S
    Am J Respir Cell Mol Biol; 2013 May; 48(5):578-88. PubMed ID: 23328640
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.