BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

776 related articles for article (PubMed ID: 32244460)

  • 1. Use of Slag from the Combustion of Solid Municipal Waste as A Partial Replacement of Cement in Mortar and Concrete.
    Czop M; Łaźniewska-Piekarczyk B
    Materials (Basel); 2020 Mar; 13(7):. PubMed ID: 32244460
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Utilization of municipal solid waste incineration (MSWI) fly ash in blended cement Part 2. Mechanical strength of mortars and environmental impact.
    Aubert JE; Husson B; Sarramone N
    J Hazard Mater; 2007 Jul; 146(1-2):12-9. PubMed ID: 17182180
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Performance of Ground Granulated Blast-Furnace Slag and Coal Fly Ash Ternary Portland Cements Exposed to Natural Carbonation.
    Rivera RA; Sanjuán MÁ; Martín DA; Costafreda JL
    Materials (Basel); 2021 Jun; 14(12):. PubMed ID: 34208389
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Utilization of municipal solid waste incineration (MSWI) fly ash in blended cement Part 1: Processing and characterization of MSWI fly ash.
    Aubert JE; Husson B; Sarramone N
    J Hazard Mater; 2006 Aug; 136(3):624-31. PubMed ID: 16442718
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The possibility of fly ash and blast furnace slag disposal by using these environmental wastes as substitutes in portland cement.
    Bayraktar OY
    Environ Monit Assess; 2019 Aug; 191(9):560. PubMed ID: 31407116
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Long-Term Behavior of Cement Mortars Based on Municipal Solid Waste Slag and Natural Zeolite-A Comprehensive Physico-Mechanical, Structural and Chemical Assessment.
    Thomas M; Osińska M; Ślosarczyk A
    Materials (Basel); 2022 Jan; 15(3):. PubMed ID: 35160945
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The use of calcium sulfo-aluminate cement as an alternative to Portland Cement for the recycling of municipal solid waste incineration bottom ash in mortar.
    Antoun M; Becquart F; Gerges N; Aouad G
    Waste Manag Res; 2020 Aug; 38(8):868-875. PubMed ID: 32419672
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Study on the Mechanical Properties, Wear Resistance and Microstructure of Hybrid Fiber-Reinforced Mortar Containing High Volume of Industrial Solid Waste Mineral Admixture.
    Wu H; Jia Y; Yuan Z; Li Z; Sun T; Zhang J
    Materials (Basel); 2022 Jun; 15(11):. PubMed ID: 35683262
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of Pb-slag, MSWI bottom ash and boiler and fly ash for using as a fine aggregate in cement mortar.
    Saikia N; Cornelis G; Mertens G; Elsen J; Van Balen K; Van Gerven T; Vandecasteele C
    J Hazard Mater; 2008 Jun; 154(1-3):766-77. PubMed ID: 18068299
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recycling Blast Furnace Ferronickel Slag as a Replacement for Paste in Mortar: Formation of Carboaluminate, Reduction of White Portland Cement, and Increase in Strength.
    Guan Q; Xia J; Wang J; Leng F; Zhou Y; Cao C
    Materials (Basel); 2021 May; 14(10):. PubMed ID: 34065562
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pozzolanic reactivity of the synthetic slag from municipal solid waste incinerator cyclone ash and scrubber ash.
    Lin KL; Lin DF
    J Air Waste Manag Assoc; 2006 May; 56(5):569-74. PubMed ID: 16739792
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chloride Diffusion in Concrete Made with Coal Fly Ash Ternary and Ground Granulated Blast-Furnace Slag Portland Cements.
    Sanjuán MÁ; Rivera RA; Martín DA; Estévez E
    Materials (Basel); 2022 Dec; 15(24):. PubMed ID: 36556718
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of the Type of Cement on the Action of the Admixture Containing Aluminum Powder.
    Kuziak J; Zalegowski K; Jackiewicz-Rek W; Stanisławek E
    Materials (Basel); 2021 May; 14(11):. PubMed ID: 34072285
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of Ground Granulated Blast Furnace Slag Replacement Ratio on Structural Performance of Precast Concrete Beams.
    Lee YJ; Kim HG; Kim KH
    Materials (Basel); 2021 Nov; 14(23):. PubMed ID: 34885317
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Concrete Properties Comparison When Substituting a 25% Cement with Slag from Different Provenances.
    Parron-Rubio ME; Perez-García F; Gonzalez-Herrera A; Rubio-Cintas MD
    Materials (Basel); 2018 Jun; 11(6):. PubMed ID: 29914191
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of the Possibility of Using Slags from the Thermal Treatment of Municipal Waste as Potential Component of Cement-Case Study.
    Czop M; Łaźniewska-Piekarczyk B; Kajda-Szcześniak M
    Materials (Basel); 2021 Oct; 14(21):. PubMed ID: 34772016
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Potential Role of GGBS and ACBFS Blast Furnace Slag at 90 Days for Application in Rigid Concrete Pavements.
    Nicula LM; Manea DL; Simedru D; Cadar O; Dragomir ML; Ardelean I; Corbu O
    Materials (Basel); 2023 Aug; 16(17):. PubMed ID: 37687595
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recycling municipal incinerator fly- and scrubber-ash into fused slag for the substantial replacement of cement in cement-mortars.
    Lee TC; Rao MK
    Waste Manag; 2009 Jun; 29(6):1952-9. PubMed ID: 19216067
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Strength properties of concrete incorporating coal bottom ash and granulated blast furnace slag.
    Ozkan O; Yüksel I; Muratoğlu O
    Waste Manag; 2007; 27(2):161-7. PubMed ID: 16580833
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Municipal Solid Waste Incineration Fly Ash: From Waste to Cement Manufacturing Resource.
    Marieta C; Martín-Garin A; Leon I; Guerrero A
    Materials (Basel); 2023 Mar; 16(6):. PubMed ID: 36984416
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 39.