These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 32244728)

  • 1. Highly Sensitive and Multiplexed In-Situ Protein Profiling with Cleavable Fluorescent Streptavidin.
    Liao R; Pham T; Mastroeni D; Coleman PD; Labaer J; Guo J
    Cells; 2020 Apr; 9(4):. PubMed ID: 32244728
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrasensitive and Multiplexed Protein Imaging with Cleavable Fluorescent Tyramide and Antibody Stripping.
    Pham T; Nazaroff CD; Labaer J; Guo J
    Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445351
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiplexed In Situ Protein Profiling with High-Performance Cleavable Fluorescent Tyramide.
    Pham T; Liao R; Labaer J; Guo J
    Molecules; 2021 Apr; 26(8):. PubMed ID: 33921211
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrasensitive and Multiplexed Protein Imaging with Clickable and Cleavable Fluorophores.
    Pham T; Chen Y; Labaer J; Guo J
    Anal Chem; 2024 May; 96(18):7281-7288. PubMed ID: 38663032
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly Multiplexed Single-Cell In Situ Protein Analysis with Cleavable Fluorescent Antibodies.
    Mondal M; Liao R; Xiao L; Eno T; Guo J
    Angew Chem Int Ed Engl; 2017 Mar; 56(10):2636-2639. PubMed ID: 28128531
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrasensitive and multiplexed protein imaging with clickable and cleavable fluorophores.
    Pham T; Chen Y; Labaer J; Guo J
    bioRxiv; 2023 Oct; ():. PubMed ID: 37961266
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly Sensitive and Multiplexed In Situ RNA Profiling with Cleavable Fluorescent Tyramide.
    Xiao L; Labaer J; Guo J
    Cells; 2021 May; 10(6):. PubMed ID: 34063986
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biotin induced fluorescence enhancement in resonance energy transfer and application for bioassay.
    Hu S; Yang H; Cai R; Liu Z; Yang X
    Talanta; 2009 Dec; 80(2):454-8. PubMed ID: 19836503
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of fluorescent polymerization-based signal amplification for sensitive and non-enzymatic biodetection in antibody microarrays.
    Avens HJ; Bowman CN
    Acta Biomater; 2010 Jan; 6(1):83-9. PubMed ID: 19508906
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly Sensitive and Multiplexed Protein Imaging With Cleavable Fluorescent Tyramide Reveals Human Neuronal Heterogeneity.
    Liao R; Mondal M; Nazaroff CD; Mastroeni D; Coleman PD; Labaer J; Guo J
    Front Cell Dev Biol; 2020; 8():614624. PubMed ID: 33585449
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cellular uptake of fluorescent labelled biotin-streptavidin microspheres.
    Bradley M; Alexander L; Sanchez-Martin RM
    J Fluoresc; 2008; 18(3-4):733-9. PubMed ID: 18330682
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel biosensor system model based on fluorescence quenching by a fluorescent streptavidin and carbazole-labeled biotin.
    Zhu X; Shinohara H; Miyatake R; Hohsaka T
    J Mol Recognit; 2016 Oct; 29(10):485-91. PubMed ID: 27178348
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluorescence enhancement of fluorescent unnatural streptavidin by binding of a biotin analogue with spacer tail and its application to biotin sensing.
    Zhu X; Shinohara H
    ScientificWorldJournal; 2014; 2014():165369. PubMed ID: 24790550
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thiol-Cleavable Biotin for Chemical and Enzymatic Biotinylation and Its Application to Mitochondrial TurboID Proteomics.
    Li H; Frankenfield AM; Houston R; Sekine S; Hao L
    J Am Soc Mass Spectrom; 2021 Sep; 32(9):2358-2365. PubMed ID: 33909971
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Amine Landscaping to Maximize Protein-Dye Fluorescence and Ultrastable Protein-Ligand Interaction.
    Jacobsen MT; Fairhead M; Fogelstrand P; Howarth M
    Cell Chem Biol; 2017 Aug; 24(8):1040-1047.e4. PubMed ID: 28757182
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiplexed miRNA fluorescence in situ hybridization for formalin-fixed paraffin-embedded tissues.
    Renwick N; Cekan P; Bognanni C; Tuschl T
    Methods Mol Biol; 2014; 1211():171-87. PubMed ID: 25218385
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A biotin label-based antibody array for high-content profiling of protein expression.
    Huang R; Jiang W; Yang J; Mao YQ; Zhang Y; Yang W; Yang D; Burkholder B; Huang RF; Huang RP
    Cancer Genomics Proteomics; 2010; 7(3):129-41. PubMed ID: 20551245
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly multiplexed single-cell
    Mondal M; Liao R; Nazaroff CD; Samuel AD; Guo J
    Chem Sci; 2018 Mar; 9(11):2909-2917. PubMed ID: 29732074
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Site-directed incorporation of fluorescent nonnatural amino acids into streptavidin for highly sensitive detection of biotin.
    Murakami H; Hohsaka T; Ashizuka Y; Hashimoto K; Sisido M
    Biomacromolecules; 2000; 1(1):118-25. PubMed ID: 11709833
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrophoretic behavior of streptavidin complexed to a biotinylated probe: a functional screening assay for biotin-binding proteins.
    Humbert N; Zocchi A; Ward TR
    Electrophoresis; 2005 Jan; 26(1):47-52. PubMed ID: 15624156
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.