BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 32244747)

  • 1. Computational Study of Drugs Targeting Nuclear Receptors.
    Kenda M; Sollner Dolenc M
    Molecules; 2020 Apr; 25(7):. PubMed ID: 32244747
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of the endocrine disruption profile of pesticides.
    Devillers J; Bro E; Millot F
    SAR QSAR Environ Res; 2015; 26(10):831-52. PubMed ID: 26548639
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In Silico Molecular Docking and In Vivo Validation with
    Jeong J; Kim H; Choi J
    Int J Mol Sci; 2019 Mar; 20(5):. PubMed ID: 30857347
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of putative estrogen receptor-mediated endocrine disrupting chemicals using QSAR- and structure-based virtual screening approaches.
    Zhang L; Sedykh A; Tripathi A; Zhu H; Afantitis A; Mouchlis VD; Melagraki G; Rusyn I; Tropsha A
    Toxicol Appl Pharmacol; 2013 Oct; 272(1):67-76. PubMed ID: 23707773
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In silico identification and pharmacological evaluation of novel endocrine disrupting chemicals that act via the ligand-binding domain of the estrogen receptor α.
    McRobb FM; Kufareva I; Abagyan R
    Toxicol Sci; 2014 Sep; 141(1):188-97. PubMed ID: 24928891
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integration of in silico methods and computational systems biology to explore endocrine-disrupting chemical binding with nuclear hormone receptors.
    Ruiz P; Sack A; Wampole M; Bobst S; Vracko M
    Chemosphere; 2017 Jul; 178():99-109. PubMed ID: 28319747
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational evaluation of endocrine activity of biocidal active substances.
    Stanojević M; Vračko Grobelšek M; Sollner Dolenc M
    Chemosphere; 2021 Mar; 267():129284. PubMed ID: 33338726
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In silico methods in the discovery of endocrine disrupting chemicals.
    Vuorinen A; Odermatt A; Schuster D
    J Steroid Biochem Mol Biol; 2013 Sep; 137():18-26. PubMed ID: 23688835
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational study of binding affinity to nuclear receptors for some cosmetic ingredients.
    Plošnik A; Vračko M; Mavri J
    Chemosphere; 2015 Sep; 135():325-34. PubMed ID: 25974010
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Virtual screening of potentially endocrine-disrupting chemicals against nuclear receptors and its application to identify PPARγ-bound fatty acids.
    Jaladanki CK; He Y; Zhao LN; Maurer-Stroh S; Loo LH; Song H; Fan H
    Arch Toxicol; 2021 Jan; 95(1):355-374. PubMed ID: 32909075
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determining the endocrine disruption potential of industrial chemicals using an integrative approach: Public databases, in vitro exposure, and modeling receptor interactions.
    Alofe O; Kisanga E; Inayat-Hussain SH; Fukumura M; Garcia-Milian R; Perera L; Vasiliou V; Whirledge S
    Environ Int; 2019 Oct; 131():104969. PubMed ID: 31310931
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of the Endocrine disruption profile of fluorinated biphenyls and analogues: An in silico study.
    Zhong Y; Ren J; Li R; Xuan Y; Yao W; Yang Q; Gan Y; Yu S; Yuan J
    Chemosphere; 2023 Feb; 314():137701. PubMed ID: 36587920
    [TBL] [Abstract][Full Text] [Related]  

  • 13. VirtualToxLab - in silico prediction of the toxic (endocrine-disrupting) potential of drugs, chemicals and natural products. Two years and 2,000 compounds of experience: a progress report.
    Vedani A; Smiesko M; Spreafico M; Peristera O; Dobler M
    ALTEX; 2009; 26(3):167-76. PubMed ID: 19907904
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting Potential Endocrine Disrupting Chemicals Binding to Estrogen Receptor α (ERα) Using a Pipeline Combining Structure-Based and Ligand-Based in Silico Methods.
    Sellami A; Montes M; Lagarde N
    Int J Mol Sci; 2021 Mar; 22(6):. PubMed ID: 33799614
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Priority list of potential endocrine-disrupting chemicals in food chemical contaminants: a docking study and in vitro/epidemiological evidence integration.
    Ren J; Jin T; Li R; Zhong YY; Xuan YX; Wang YL; Yao W; Yu SL; Yuan JT
    SAR QSAR Environ Res; 2023; 34(10):847-866. PubMed ID: 37920972
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Endocrine Disruption at the Androgen Receptor: Employing Molecular Dynamics and Docking for Improved Virtual Screening and Toxicity Prediction.
    Wahl J; Smieško M
    Int J Mol Sci; 2018 Jun; 19(6):. PubMed ID: 29914135
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational study involving identification of endocrine disrupting potential of herbicides: Its implication in TDS and cancer progression in CRPC patients.
    Ahmad MI; Usman A; Ahmad M
    Chemosphere; 2017 Apr; 173():395-403. PubMed ID: 28129617
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Endocrine disruptome--an open source prediction tool for assessing endocrine disruption potential through nuclear receptor binding.
    Kolšek K; Mavri J; Sollner Dolenc M; Gobec S; Turk S
    J Chem Inf Model; 2014 Apr; 54(4):1254-67. PubMed ID: 24628082
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational study suggesting reconsideration of BPA analogues based on their endocrine disrupting potential estimated by binding affinities to nuclear receptors.
    Usman A; Ahmad M
    Ecotoxicol Environ Saf; 2019 Apr; 171():154-161. PubMed ID: 30599433
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessment of the endocrine-disrupting effects of organophosphorus pesticide triazophos and its metabolites on endocrine hormones biosynthesis, transport and receptor binding in silico.
    Yang FW; Li YX; Ren FZ; Luo J; Pang GF
    Food Chem Toxicol; 2019 Nov; 133():110759. PubMed ID: 31421215
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.