BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

425 related articles for article (PubMed ID: 32244756)

  • 1. Cell Intrinsic and Systemic Metabolism in Tumor Immunity and Immunotherapy.
    Coleman MF; Cozzo AJ; Pfeil AJ; Etigunta SK; Hursting SD
    Cancers (Basel); 2020 Apr; 12(4):. PubMed ID: 32244756
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tumor Cell-Intrinsic Immunometabolism and Precision Nutrition in Cancer Immunotherapy.
    Cuyàs E; Verdura S; Martin-Castillo B; Alarcón T; Lupu R; Bosch-Barrera J; Menendez JA
    Cancers (Basel); 2020 Jul; 12(7):. PubMed ID: 32630618
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Balancing cancer immunotherapy and immune-related adverse events: The emerging role of regulatory T cells.
    Alissafi T; Hatzioannou A; Legaki AI; Varveri A; Verginis P
    J Autoimmun; 2019 Nov; 104():102310. PubMed ID: 31421963
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modern Aspects of Immunotherapy with Checkpoint Inhibitors in Melanoma.
    Petrova V; Arkhypov I; Weber R; Groth C; Altevogt P; Utikal J; Umansky V
    Int J Mol Sci; 2020 Mar; 21(7):. PubMed ID: 32235439
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic Hallmarks of Tumor and Immune Cells in the Tumor Microenvironment.
    Renner K; Singer K; Koehl GE; Geissler EK; Peter K; Siska PJ; Kreutz M
    Front Immunol; 2017; 8():248. PubMed ID: 28337200
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Immune-mediated anti-tumor effects of metformin; targeting metabolic reprogramming of T cells as a new possible mechanism for anti-cancer effects of metformin.
    Bahrambeigi S; Shafiei-Irannejad V
    Biochem Pharmacol; 2020 Apr; 174():113787. PubMed ID: 31884044
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Systemic Blood Immune Cell Populations as Biomarkers for the Outcome of Immune Checkpoint Inhibitor Therapies.
    Hernandez C; Arasanz H; Chocarro L; Bocanegra A; Zuazo M; Fernandez-Hinojal G; Blanco E; Vera R; Escors D; Kochan G
    Int J Mol Sci; 2020 Mar; 21(7):. PubMed ID: 32244396
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tumor-intrinsic signaling pathways: key roles in the regulation of the immunosuppressive tumor microenvironment.
    Yang L; Li A; Lei Q; Zhang Y
    J Hematol Oncol; 2019 Nov; 12(1):125. PubMed ID: 31775797
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Immune Checkpoint Inhibitors in Thoracic Malignancies: Review of the Existing Evidence by an IASLC Expert Panel and Recommendations.
    Remon J; Passiglia F; Ahn MJ; Barlesi F; Forde PM; Garon EB; Gettinger S; Goldberg SB; Herbst RS; Horn L; Kubota K; Lu S; Mezquita L; Paz-Ares L; Popat S; Schalper KA; Skoulidis F; Reck M; Adjei AA; Scagliotti GV
    J Thorac Oncol; 2020 Jun; 15(6):914-947. PubMed ID: 32179179
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic communication in tumors: a new layer of immunoregulation for immune evasion.
    Ho PC; Liu PS
    J Immunother Cancer; 2016; 4():4. PubMed ID: 26885366
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Immune checkpoint inhibitor therapy in biliary tract cancer (cholangiocarcinoma).
    Jakubowski CD; Azad NS
    Chin Clin Oncol; 2020 Feb; 9(1):2. PubMed ID: 32008328
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Functional Crosstalk between Myeloid-Derived Suppressor Cells and Regulatory T Cells within the Immunosuppressive Tumor Microenvironment.
    Haist M; Stege H; Grabbe S; Bros M
    Cancers (Basel); 2021 Jan; 13(2):. PubMed ID: 33430105
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Obesity and Cancer Metabolism: A Perspective on Interacting Tumor-Intrinsic and Extrinsic Factors.
    Doerstling SS; O'Flanagan CH; Hursting SD
    Front Oncol; 2017; 7():216. PubMed ID: 28959684
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prospects for combining immune checkpoint blockade with PARP inhibition.
    Li A; Yi M; Qin S; Chu Q; Luo S; Wu K
    J Hematol Oncol; 2019 Sep; 12(1):98. PubMed ID: 31521196
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of myeloid-derived suppressor cells in immune checkpoint inhibitor therapy in cancer.
    Park SM; Youn JI
    Arch Pharm Res; 2019 Jul; 42(7):560-566. PubMed ID: 31147902
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Metabolic Competition in Tumor Microenvironment].
    Eikawa S; Udono H
    Gan To Kagaku Ryoho; 2017 Nov; 44(11):972-976. PubMed ID: 29138369
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Immune checkpoint inhibitors in cancer therapy: a focus on T-regulatory cells.
    Sasidharan Nair V; Elkord E
    Immunol Cell Biol; 2018 Jan; 96(1):21-33. PubMed ID: 29359507
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Therapeutic Strategies for Overcoming Immunotherapy Resistance Mediated by Immunosuppressive Factors of the Glioblastoma Microenvironment.
    Miyazaki T; Ishikawa E; Sugii N; Matsuda M
    Cancers (Basel); 2020 Jul; 12(7):. PubMed ID: 32707672
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of Immunotherapy in Targeting the Bone Marrow Microenvironment in Multiple Myeloma: An Evolving Therapeutic Strategy.
    Chung C
    Pharmacotherapy; 2017 Jan; 37(1):129-143. PubMed ID: 27870103
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Immunometabolism: A new target for improving cancer immunotherapy.
    Guo C; Chen S; Liu W; Ma Y; Li J; Fisher PB; Fang X; Wang XY
    Adv Cancer Res; 2019; 143():195-253. PubMed ID: 31202359
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.