BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

423 related articles for article (PubMed ID: 32244756)

  • 41. Targeting T cell immunometabolism for cancer immunotherapy; understanding the impact of the tumor microenvironment.
    Mockler MB; Conroy MJ; Lysaght J
    Front Oncol; 2014; 4():107. PubMed ID: 24904823
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Glutamine blockade induces divergent metabolic programs to overcome tumor immune evasion.
    Leone RD; Zhao L; Englert JM; Sun IM; Oh MH; Sun IH; Arwood ML; Bettencourt IA; Patel CH; Wen J; Tam A; Blosser RL; Prchalova E; Alt J; Rais R; Slusher BS; Powell JD
    Science; 2019 Nov; 366(6468):1013-1021. PubMed ID: 31699883
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Altered cancer metabolism in mechanisms of immunotherapy resistance.
    Ramapriyan R; Caetano MS; Barsoumian HB; Mafra ACP; Zambalde EP; Menon H; Tsouko E; Welsh JW; Cortez MA
    Pharmacol Ther; 2019 Mar; 195():162-171. PubMed ID: 30439456
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Unraveling the crosstalk between melanoma and immune cells in the tumor microenvironment.
    Marzagalli M; Ebelt ND; Manuel ER
    Semin Cancer Biol; 2019 Dec; 59():236-250. PubMed ID: 31404607
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Immune checkpoint inhibitor combinations: Current efforts and important aspects for success.
    Kon E; Benhar I
    Drug Resist Updat; 2019 Jul; 45():13-29. PubMed ID: 31382144
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The MEK inhibitor selumetinib complements CTLA-4 blockade by reprogramming the tumor immune microenvironment.
    Poon E; Mullins S; Watkins A; Williams GS; Koopmann JO; Di Genova G; Cumberbatch M; Veldman-Jones M; Grosskurth SE; Sah V; Schuller A; Reimer C; Dovedi SJ; Smith PD; Stewart R; Wilkinson RW
    J Immunother Cancer; 2017 Aug; 5(1):63. PubMed ID: 28807001
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The non-T-cell-inflamed tumor microenvironment: contributing factors and therapeutic solutions.
    Horton BL; Spranger S
    Emerg Top Life Sci; 2017 Dec; 1(5):447-456. PubMed ID: 33525802
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Intratumoral STING Activation with T-cell Checkpoint Modulation Generates Systemic Antitumor Immunity.
    Ager CR; Reilley MJ; Nicholas C; Bartkowiak T; Jaiswal AR; Curran MA
    Cancer Immunol Res; 2017 Aug; 5(8):676-684. PubMed ID: 28674082
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Tumor-intrinsic oncogene pathways mediating immune avoidance.
    Spranger S; Gajewski TF
    Oncoimmunology; 2016 Mar; 5(3):e1086862. PubMed ID: 27141343
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Linking tumor glycolysis and immune evasion in cancer: Emerging concepts and therapeutic opportunities.
    Ganapathy-Kanniappan S
    Biochim Biophys Acta Rev Cancer; 2017 Aug; 1868(1):212-220. PubMed ID: 28400131
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Cancer Immunotherapy by Blocking Immune Checkpoints on Innate Lymphocytes.
    Pesce S; Trabanelli S; Di Vito C; Greppi M; Obino V; Guolo F; Minetto P; Bozzo M; Calvi M; Zaghi E; Candiani S; Lemoli RM; Jandus C; Mavilio D; Marcenaro E
    Cancers (Basel); 2020 Nov; 12(12):. PubMed ID: 33255582
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Tumor microenvironmental influences on dendritic cell and T cell function: A focus on clinically relevant immunologic and metabolic checkpoints.
    Hargadon KM
    Clin Transl Med; 2020 Jan; 10(1):374-411. PubMed ID: 32508018
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Targeting Cancer Metabolism to Improve Outcomes with Immune Checkpoint Inhibitors.
    Fatima Z; Abonofal A; Stephen B
    J Immunother Precis Oncol; 2023 May; 6(2):91-102. PubMed ID: 37214204
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Potential roles of sex-linked differences in obesity and cancer immunotherapy: revisiting the obesity paradox.
    Vick LV; Rosario S; Riess JW; Canter RJ; Mukherjee S; Monjazeb AM; Murphy WJ
    NPJ Metab Health Dis; 2024; 2(1):5. PubMed ID: 38800540
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Spotlight on GOT2 in Cancer Metabolism.
    Kerk SA; Garcia-Bermudez J; Birsoy K; Sherman MH; Shah YM; Lyssiotis CA
    Onco Targets Ther; 2023; 16():695-702. PubMed ID: 37635751
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Editorial overview: Intrinsically tied: metabolism and immune cell function.
    Hiller K; Brenner D
    Curr Opin Biotechnol; 2021 Apr; 68():iii-v. PubMed ID: 33879393
    [No Abstract]   [Full Text] [Related]  

  • 57. Lipids in the tumor microenvironment: From cancer progression to treatment.
    Corn KC; Windham MA; Rafat M
    Prog Lipid Res; 2020 Nov; 80():101055. PubMed ID: 32791170
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Targeting Metabolism to Improve the Tumor Microenvironment for Cancer Immunotherapy.
    Bader JE; Voss K; Rathmell JC
    Mol Cell; 2020 Jun; 78(6):1019-1033. PubMed ID: 32559423
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effects of dietary intervention on human diseases: molecular mechanisms and therapeutic potential.
    Xiao YL; Gong Y; Qi YJ; Shao ZM; Jiang YZ
    Signal Transduct Target Ther; 2024 Mar; 9(1):59. PubMed ID: 38462638
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Transcriptome Sequencing Unveils a Molecular-Stratification-Predicting Prognosis of Sarcoma Associated with Lipid Metabolism.
    Hong Y; Zhang L; Lin W; Yang Y; Cao Z; Feng X; Yu Z; Gao Y
    Int J Mol Sci; 2024 Jan; 25(3):. PubMed ID: 38338920
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.