These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 32245011)

  • 21. Atomic-resolution transmission electron microscopy of electron beam-sensitive crystalline materials.
    Zhang D; Zhu Y; Liu L; Ying X; Hsiung CE; Sougrat R; Li K; Han Y
    Science; 2018 Feb; 359(6376):675-679. PubMed ID: 29348363
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Coherent Diffraction Imaging in Transmission Electron Microscopy for Atomic Resolution Quantitative Studies of the Matter.
    Carlino E; Scattarella F; Caro L; Giannini C; Siliqi D; Colombo A; Galli DE
    Materials (Basel); 2018 Nov; 11(11):. PubMed ID: 30463217
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Characterization of JEOL 2100F Lorentz-TEM for low-magnification electron holography and magnetic imaging.
    Schofield MA; Beleggia M; Zhu Y; Pozzi G
    Ultramicroscopy; 2008 Jun; 108(7):625-34. PubMed ID: 18328628
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparison of NEXAFS microscopy and TEM-EELS for studies of soft matter.
    Hitchcock AP; Dynes JJ; Johansson G; Wang J; Botton G
    Micron; 2008 Aug; 39(6):741-8. PubMed ID: 18788101
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tutorial on off-axis electron holography.
    Lehmann M; Lichte H
    Microsc Microanal; 2002 Dec; 8(6):447-66. PubMed ID: 12533207
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Detecting dynamic responses of materials and devices under an alternating electric potential by phase-locked transmission electron microscopy.
    Soma K; Konings S; Aso R; Kamiuchi N; Kobayashi G; Yoshida H; Takeda S
    Ultramicroscopy; 2017 Oct; 181():27-41. PubMed ID: 28482229
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dose-limited spectroscopic imaging of soft materials by low-loss EELS in the scanning transmission electron microscope.
    Yakovlev S; Libera M
    Micron; 2008 Aug; 39(6):734-40. PubMed ID: 18096395
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Efficient linear phase contrast in scanning transmission electron microscopy with matched illumination and detector interferometry.
    Ophus C; Ciston J; Pierce J; Harvey TR; Chess J; McMorran BJ; Czarnik C; Rose HH; Ercius P
    Nat Commun; 2016 Feb; 7():10719. PubMed ID: 26923483
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Quantitative Mapping of the Charge Density in a Monolayer of MoS
    Boureau V; Sklenard B; McLeod R; Ovchinnikov D; Dumcenco D; Kis A; Cooper D
    ACS Nano; 2020 Jan; 14(1):524-530. PubMed ID: 31820927
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Atomic resolution phase contrast imaging and in-line holography using variable voltage and dose rate.
    Barton B; Jiang B; Song C; Specht P; Calderon H; Kisielowski C
    Microsc Microanal; 2012 Oct; 18(5):982-94. PubMed ID: 23083920
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparison of NEXAFS microscopy and TEM-EELS for studies of soft matter.
    Hitchcock AP; Dynes JJ; Johansson G; Wang J; Botton G
    Micron; 2008; 39(3):311-9. PubMed ID: 17996451
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Detecting single-electron events in TEM using low-cost electronics and a silicon strip sensor.
    Gontard LC; Moldovan G; Carmona-Galán R; Lin C; Kirkland AI
    Microscopy (Oxf); 2014 Apr; 63(2):119-30. PubMed ID: 24401331
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ultrafine heat-induced structural perturbations of bone mineral at the individual nanocrystal level.
    Verezhak M; Rauch EF; Véron M; Lancelon-Pin C; Putaux JL; Plazanet M; Gourrier A
    Acta Biomater; 2018 Jun; 73():500-508. PubMed ID: 29649638
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Development of a SEM-based low-energy in-line electron holography microscope for individual particle imaging.
    Adaniya H; Cheung M; Cassidy C; Yamashita M; Shintake T
    Ultramicroscopy; 2018 May; 188():31-40. PubMed ID: 29544194
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Off-axis electron holography of bacterial cells and magnetic nanoparticles in liquid.
    Prozorov T; Almeida TP; Kovács A; Dunin-Borkowski RE
    J R Soc Interface; 2017 Oct; 14(135):. PubMed ID: 29021160
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Progress and perspectives for atomic-resolution electron microscopy.
    Smith DJ
    Ultramicroscopy; 2008 Feb; 108(3):159-66. PubMed ID: 18054169
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mixed-state electron ptychography enables sub-angstrom resolution imaging with picometer precision at low dose.
    Chen Z; Odstrcil M; Jiang Y; Han Y; Chiu MH; Li LJ; Muller DA
    Nat Commun; 2020 Jun; 11(1):2994. PubMed ID: 32533001
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Averaging scheme for atomic resolution off-axis electron holograms.
    Niermann T; Lehmann M
    Micron; 2014 Aug; 63():28-34. PubMed ID: 24568718
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characterization of Drug Delivery Systems by Transmission Electron Microscopy.
    Hoeppener S
    Handb Exp Pharmacol; 2024; 284():191-209. PubMed ID: 37973626
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In-line three-dimensional holography of nanocrystalline objects at atomic resolution.
    Chen FR; Van Dyck D; Kisielowski C
    Nat Commun; 2016 Feb; 7():10603. PubMed ID: 26887849
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.